: Correlative Brillouin and Raman microspectroscopy (BRaMS) is applied for the in situ monitoring of the chemical and physical changes of linseed oil during polymerization. The viscoelastic properties of the drying oil throughout the phase transition were determined by Brillouin light scattering (BLS) and joined to the Raman spectroscopic information about the chemical process responsible for the oil hardening. A comparative study was then performed on an oil mock-up containing ZnO, one of the most common white pigments used in cultural heritage. The intriguing outcomes open new research perspectives for a deeper comprehension of the processes leading to the conversion of a fluid binder into a dry adhering film. The description of both chemical and structural properties of the polymeric network and their evolution are the basis for a better understanding of oil painting degradation. Last, as a feasibility test, BRaMS was applied to study a precious microfragment from J. Pollock's masterpiece Alchemy.

Microscale mechanochemical characterization of drying oil films by in situ correlative Brillouin and Raman spectroscopy

CARTECHINI, LAURA;MILIANI, COSTANZA;FIORETTO, DANIELE;COMEZ, LUCIA
;
ROSI, FRANCESCA
2022

Abstract

: Correlative Brillouin and Raman microspectroscopy (BRaMS) is applied for the in situ monitoring of the chemical and physical changes of linseed oil during polymerization. The viscoelastic properties of the drying oil throughout the phase transition were determined by Brillouin light scattering (BLS) and joined to the Raman spectroscopic information about the chemical process responsible for the oil hardening. A comparative study was then performed on an oil mock-up containing ZnO, one of the most common white pigments used in cultural heritage. The intriguing outcomes open new research perspectives for a deeper comprehension of the processes leading to the conversion of a fluid binder into a dry adhering film. The description of both chemical and structural properties of the polymeric network and their evolution are the basis for a better understanding of oil painting degradation. Last, as a feasibility test, BRaMS was applied to study a precious microfragment from J. Pollock's masterpiece Alchemy.
2022
Istituto Officina dei Materiali - IOM - Sede Secondaria Perugia
File in questo prodotto:
File Dimensione Formato  
Microscale mechanochemical characterization of drying oil films by in situ correlative Brillouin and Raman spectroscopy_ SciAdv_2022.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Dominio pubblico
Dimensione 1.86 MB
Formato Adobe PDF
1.86 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/473053
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact