As a versatile nanomaterial derived from renewable sources, nanocellulose has attracted considerable attention for its potential applications in various sectors, especially those focused on water treatment and remediation. Here, we have combined atomic force microscopy (AFM) and reactive molecular dynamics (RMD) simulations to characterize the interactions between cellulose nanofibers modified with carboxylate or phosphate groups and the protein foulant model bovine serum albumin (BSA) at pH 3.92, which is close to the isoelectric point of BSA. Colloidal probes were prepared by modification of the AFM probes with the nanofibers, and the nanofiber coating on the AFM tip was for the first time confirmed through fluorescence labeling and confocal optical sectioning. We have found that the wet-state normalized adhesion force is approximately 17.87 ± 8.58 pN/nm for the carboxylated cellulose nanofibers (TOCNF) and about 11.70 ± 2.97 pN/nm for the phosphorylated ones (PCNF) at the studied pH. Moreover, the adsorbed protein partially unfolded at the cellulose interface due to the secondary structure's loss of intramolecular hydrogen bonds. We demonstrate that nanocellulose colloidal probes can be used as a sensitive tool to reveal interactions with BSA at nano and molecular scales and under in situ conditions. RMD simulations helped to gain a molecular- and atomistic-level understanding of the differences between these findings. In the case of PCNF, partially solvated metal ions, preferentially bound to the phosphates, reduced the direct protein-cellulose connections. This understanding can lead to significant advancements in the development of cellulose-based antifouling surfaces and provide crucial insights for expanding the pH range of use and suggesting appropriate recalibrations.

Nanocellulose-Bovine Serum Albumin Interactions in an Aqueous Medium: Investigations Using In Situ Nanocolloidal Probe Microscopy and Reactive Molecular Dynamics Simulations

Monti, Susanna;
2024

Abstract

As a versatile nanomaterial derived from renewable sources, nanocellulose has attracted considerable attention for its potential applications in various sectors, especially those focused on water treatment and remediation. Here, we have combined atomic force microscopy (AFM) and reactive molecular dynamics (RMD) simulations to characterize the interactions between cellulose nanofibers modified with carboxylate or phosphate groups and the protein foulant model bovine serum albumin (BSA) at pH 3.92, which is close to the isoelectric point of BSA. Colloidal probes were prepared by modification of the AFM probes with the nanofibers, and the nanofiber coating on the AFM tip was for the first time confirmed through fluorescence labeling and confocal optical sectioning. We have found that the wet-state normalized adhesion force is approximately 17.87 ± 8.58 pN/nm for the carboxylated cellulose nanofibers (TOCNF) and about 11.70 ± 2.97 pN/nm for the phosphorylated ones (PCNF) at the studied pH. Moreover, the adsorbed protein partially unfolded at the cellulose interface due to the secondary structure's loss of intramolecular hydrogen bonds. We demonstrate that nanocellulose colloidal probes can be used as a sensitive tool to reveal interactions with BSA at nano and molecular scales and under in situ conditions. RMD simulations helped to gain a molecular- and atomistic-level understanding of the differences between these findings. In the case of PCNF, partially solvated metal ions, preferentially bound to the phosphates, reduced the direct protein-cellulose connections. This understanding can lead to significant advancements in the development of cellulose-based antifouling surfaces and provide crucial insights for expanding the pH range of use and suggesting appropriate recalibrations.
2024
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
Carboxylation; Hydrogen bonds; Mammals; Metal ions; Molecular dynamics; Nanofibers; Probes; Proteins; Surface plasmon resonance; Water treatment; Aqueous media; Atomic-force-microscopy; Bovine serum albumins; Cellulose nanofibers; Colloidal probes; Dynamics simulation; Nano-cellulose; Probe microscopy; Reactive molecular dynamics; Renewable sources; Nanocellulose
File in questo prodotto:
File Dimensione Formato  
khalili-et-al-2024-nanocellulose-bovine-serum-albumin-interactions-in-an-aqueous-medium-investigations-using-in-situ.pdf

embargo fino al 27/05/2025

Tipologia: Documento in Post-print
Licenza: Altro tipo di licenza
Dimensione 12.25 MB
Formato Adobe PDF
12.25 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Biomacromolecules 2024, 25, 6, 3703–3714 small.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.37 MB
Formato Adobe PDF
1.37 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/473781
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact