To improve reactivity and achieve a higher material efficiency, catalysts are often used in the form of clusters with nanometer dimensions, down to single atoms. Since the corresponding properties are highly structure-dependent, a suitable support is thus required to ensure cluster stability during operating conditions. Herein, an efficient method to stabilize cobalt nanoclusters on graphene grown on nickel substrates, exploiting the anchoring effect of nickel atoms incorporated in the carbon network is presented. The anchored nanoclusters are studied by in situ variable temperature scanning tunneling microscopy at different temperatures and upon gas exposure. Cluster stability upon annealing up to 200 °C and upon CO exposure at least up to 1 × 10−6 mbar CO partial pressure is demonstrated. Moreover, the dimensions of the cobalt nanoclusters remain surprisingly small (<3 nm diameter) with a narrow size distribution. Density functional theory calculations demonstrate that the interplay between the low diffusion barrier on graphene on nickel and the strong anchoring effect of the nickel atoms leads to the increased stability and size selectivity of these clusters. This anchoring technique is expected to be applicable also to other cases, with clear advantages for transition metals that are usually difficult to stabilize.

Exceptionally Stable Cobalt Nanoclusters on Functionalized Graphene

Chesnyak V.
Primo
;
Stavric S.
Secondo
;
Panighel M.
;
Peressi M.;Comelli G.
Penultimo
;
Africh C.
Ultimo
2024

Abstract

To improve reactivity and achieve a higher material efficiency, catalysts are often used in the form of clusters with nanometer dimensions, down to single atoms. Since the corresponding properties are highly structure-dependent, a suitable support is thus required to ensure cluster stability during operating conditions. Herein, an efficient method to stabilize cobalt nanoclusters on graphene grown on nickel substrates, exploiting the anchoring effect of nickel atoms incorporated in the carbon network is presented. The anchored nanoclusters are studied by in situ variable temperature scanning tunneling microscopy at different temperatures and upon gas exposure. Cluster stability upon annealing up to 200 °C and upon CO exposure at least up to 1 × 10−6 mbar CO partial pressure is demonstrated. Moreover, the dimensions of the cobalt nanoclusters remain surprisingly small (<3 nm diameter) with a narrow size distribution. Density functional theory calculations demonstrate that the interplay between the low diffusion barrier on graphene on nickel and the strong anchoring effect of the nickel atoms leads to the increased stability and size selectivity of these clusters. This anchoring technique is expected to be applicable also to other cases, with clear advantages for transition metals that are usually difficult to stabilize.
2024
Istituto Officina dei Materiali - IOM -
File in questo prodotto:
File Dimensione Formato  
Small Structures_Chesnyak.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.51 MB
Formato Adobe PDF
2.51 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/473958
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact