Catalytic total oxidation is an effective technique for the treatment of industrial VOCs principally resulting from industrial processes using solvents and usually containing mono-aromatics (BTEX) and oxygenated compounds (acetone, ethanol, butanone). The aim of this work is to deposit gold nanoparticles on CoAl mixed oxide issued from layered double hydroxide (LDH) precursor by using the deposition precipitation (DP) method, which is applied with two modifications, labeled method (A) and method (B), in order to enhance the interaction of the HAuCl4 precursor with the support. Method (A) involves the hydrolysis of the HAuCl4 precursor after addition of the support, while in method (B), the gold precursor is hydrolyzed before adding the support. The two methods were applied using as support the CoAl mixed oxide and the LDH precursor. Samples were characterized by several physical chemical techniques and evaluated for ethanol total oxidation. Method (B) allowed the ethanol oxidation activity to be enhanced for the resulting Au/CoAlOx catalysts thanks to the high surface concentration of Co2+ and improved reducibility at low temperature. The presence of gold permits to minimize the formation of by-products, notably, methanol, allowed for a total oxidation of ethanol at lower temperature than the corresponding support.

Synthesis of Gold Nanoparticles over CoAl Mixed Oxide for Ethanol Oxidation Reaction

La Parola V.;Liotta L. F.;
2024

Abstract

Catalytic total oxidation is an effective technique for the treatment of industrial VOCs principally resulting from industrial processes using solvents and usually containing mono-aromatics (BTEX) and oxygenated compounds (acetone, ethanol, butanone). The aim of this work is to deposit gold nanoparticles on CoAl mixed oxide issued from layered double hydroxide (LDH) precursor by using the deposition precipitation (DP) method, which is applied with two modifications, labeled method (A) and method (B), in order to enhance the interaction of the HAuCl4 precursor with the support. Method (A) involves the hydrolysis of the HAuCl4 precursor after addition of the support, while in method (B), the gold precursor is hydrolyzed before adding the support. The two methods were applied using as support the CoAl mixed oxide and the LDH precursor. Samples were characterized by several physical chemical techniques and evaluated for ethanol total oxidation. Method (B) allowed the ethanol oxidation activity to be enhanced for the resulting Au/CoAlOx catalysts thanks to the high surface concentration of Co2+ and improved reducibility at low temperature. The presence of gold permits to minimize the formation of by-products, notably, methanol, allowed for a total oxidation of ethanol at lower temperature than the corresponding support.
2024
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN - Sede Secondaria Palermo
CoAl mixed oxides
DP method
ethanol total oxidation
gold nanoparticles
LDH
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/474027
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact