Two different types of silica monolith based on commercial hydrophobic Aerosil200 and hydrophilic Sipernat320 (Evonik) were successfully covalently functionalized with different amines as CO2 sequestrants. 3-aminopropyltriethoxysilane (AMPS) was used for a first functionalization and applied as it is or as linker to extend the chain length with diglycine (diGly) and triglycine (triGly). The physico-chemical characterization of the samples comprehends nitrogen adsorption at -196 °C to determine surface area and porosity and thermogravimetric analysis (TGA) to evaluate the thermal stability of the materials and quantify the extent of functionalization. CO2 and N2 adsorption microcalorimetry, coupled with FTIR spectroscopy, was used to evaluate the ability of the materials to selectively sequestrate CO2 against N2 in post-combustion procedures and the reversibility of the process. The comparison with a powdery commercial activated carbon, taken as reference, evidences the good adsorption capacity (comparable to that of the carbon reference) of monoliths from Sipernat 320 bringing a short aliphatic chain and terminal -NH2 groups (more than 700 μmol/g of CO2 sequestrated at 30 °C), and the advantages in term of easy storage and recoverability, with respect to powdery adsorbents.

Surface functionalization of handleable silica-based mesoporous materials for CO2 sequestration: Synthesis, characterization and performance.

Testa M. L.
Ultimo
2021

Abstract

Two different types of silica monolith based on commercial hydrophobic Aerosil200 and hydrophilic Sipernat320 (Evonik) were successfully covalently functionalized with different amines as CO2 sequestrants. 3-aminopropyltriethoxysilane (AMPS) was used for a first functionalization and applied as it is or as linker to extend the chain length with diglycine (diGly) and triglycine (triGly). The physico-chemical characterization of the samples comprehends nitrogen adsorption at -196 °C to determine surface area and porosity and thermogravimetric analysis (TGA) to evaluate the thermal stability of the materials and quantify the extent of functionalization. CO2 and N2 adsorption microcalorimetry, coupled with FTIR spectroscopy, was used to evaluate the ability of the materials to selectively sequestrate CO2 against N2 in post-combustion procedures and the reversibility of the process. The comparison with a powdery commercial activated carbon, taken as reference, evidences the good adsorption capacity (comparable to that of the carbon reference) of monoliths from Sipernat 320 bringing a short aliphatic chain and terminal -NH2 groups (more than 700 μmol/g of CO2 sequestrated at 30 °C), and the advantages in term of easy storage and recoverability, with respect to powdery adsorbents.
2021
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
Aerosil200
Amine immobilization
CO2
adsorption
Silica monolith
Sipernat320
Surface functionalization
File in questo prodotto:
File Dimensione Formato  
2021TESTA_2021SI101542.pdf

solo utenti autorizzati

Descrizione: Surface functionalization of handleable silica-based mesoporous materials for CO2 sequestration: synthesis, characterization and performance
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.81 MB
Formato Adobe PDF
3.81 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/474047
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact