The defective sites on the eight-connected [Zr6O4(OH)8(H2O)4]8+ nodes of the metal–organic framework (MOF) PCN-700 are the anchoring points for its postsynthetic decoration with extra linkers via solvent-assisted linker incorporation (SALI). The thiazolo[5,4-d]thiazole-2,5-dicarboxylic acid (H2TTz) and the newly prepared 2,2′-(1,4-phenylene)bis(4-methylthiazole-5-carboxylic acid) (H2TzPhTzMe) have been inserted into PCN-700 to obtain the mixed-linker MOFs (MIXMOFs) [TTz@PCN-700] (1) and [TzPhTzMe@PCN-700] (2). The two MIXMOFs are luminescent, and they have been exploited as sensors and adsorbents of diclofenac sodium (DCF) in aqueous solutions at ambient temperature. The emission intensity of 2 shows an unprecedented “parabolic” trend combined with a (λmax)em blue shift from 470 to 430 nm that induces a color change from turquoise to blue in the presence of DCF upon irradiation with a suitable wavelength. Its DCF limit of detection is 8.4 × 10–6 M. 1 is an excellent DCF “sponge” in water, with a maximum adsorption capacity (Xm) of 263.2 mg/g. Density functional theory (DFT) modeling of the electronic structure of the empty and DCF-loaded MOFs has revealed that the highest-occupied crystal orbital (HOCO) is mainly centered on Me2-BPDC2– in 1, while it is prevalently centered on TzPhTzMe(2−) in 2. This may be at the origin of the different emission behavior of the two MOFs.

Thiazole-Decorated PCN-700 Metal–Organic Frameworks for Diclofenac Luminescence Sensing and Adsorption in Wastewater

Provinciali, Giacomo;Capodilupo, Agostina Lina;Tuci, Giulia;Giambastiani, Giuliano;Piccirillo, Clara;Rossin, Andrea
2024

Abstract

The defective sites on the eight-connected [Zr6O4(OH)8(H2O)4]8+ nodes of the metal–organic framework (MOF) PCN-700 are the anchoring points for its postsynthetic decoration with extra linkers via solvent-assisted linker incorporation (SALI). The thiazolo[5,4-d]thiazole-2,5-dicarboxylic acid (H2TTz) and the newly prepared 2,2′-(1,4-phenylene)bis(4-methylthiazole-5-carboxylic acid) (H2TzPhTzMe) have been inserted into PCN-700 to obtain the mixed-linker MOFs (MIXMOFs) [TTz@PCN-700] (1) and [TzPhTzMe@PCN-700] (2). The two MIXMOFs are luminescent, and they have been exploited as sensors and adsorbents of diclofenac sodium (DCF) in aqueous solutions at ambient temperature. The emission intensity of 2 shows an unprecedented “parabolic” trend combined with a (λmax)em blue shift from 470 to 430 nm that induces a color change from turquoise to blue in the presence of DCF upon irradiation with a suitable wavelength. Its DCF limit of detection is 8.4 × 10–6 M. 1 is an excellent DCF “sponge” in water, with a maximum adsorption capacity (Xm) of 263.2 mg/g. Density functional theory (DFT) modeling of the electronic structure of the empty and DCF-loaded MOFs has revealed that the highest-occupied crystal orbital (HOCO) is mainly centered on Me2-BPDC2– in 1, while it is prevalently centered on TzPhTzMe(2−) in 2. This may be at the origin of the different emission behavior of the two MOFs.
2024
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
Istituto di Nanotecnologia - NANOTEC - Sede Lecce
Adsorption, Color, Crystal structure, Luminescence, Metal organic frameworks
File in questo prodotto:
File Dimensione Formato  
provinciali-et-al-2024-thiazole-decorated-pcn-700-metal-organic-frameworks-for-diclofenac-luminescence-sensing-and.pdf

embargo fino al 16/05/2025

Descrizione: “This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS EST Water, copyright © 2024 American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acsestwater.3c00303.”
Tipologia: Documento in Post-print
Licenza: Altro tipo di licenza
Dimensione 10.8 MB
Formato Adobe PDF
10.8 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
ACS EST Water 2024, 4, 6, 2339–2351 resized.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.55 MB
Formato Adobe PDF
1.55 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/474922
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact