Spins are prototypical systems with the potential to probe magnetic fields down to the atomic scale limit. Exploiting their quantum nature through appropriate sensing protocols allows to enlarge their applicability to fields not always accessible by classical sensors. Here we first show that quantum sensing protocols for AC magnetic fields can be implemented with molecular spin ensembles embedded into hybrid quantum circuits. We then show that, using only echo detection at microwave frequency and no optical readout, Dynamical Decoupling protocols synchronized with the AC magnetic fields can enhance sensitivity up to S ≈ 10−10 − 10−9 T Hz−1/2 with a low (4-5) number of applied pulses. These results paves the way for the development of strategies to exploit molecular spins as quantum sensors.
Quantum sensing of magnetic fields with molecular spins
Bonizzoni C.
;Ghirri A.;Affronte M.
2024
Abstract
Spins are prototypical systems with the potential to probe magnetic fields down to the atomic scale limit. Exploiting their quantum nature through appropriate sensing protocols allows to enlarge their applicability to fields not always accessible by classical sensors. Here we first show that quantum sensing protocols for AC magnetic fields can be implemented with molecular spin ensembles embedded into hybrid quantum circuits. We then show that, using only echo detection at microwave frequency and no optical readout, Dynamical Decoupling protocols synchronized with the AC magnetic fields can enhance sensitivity up to S ≈ 10−10 − 10−9 T Hz−1/2 with a low (4-5) number of applied pulses. These results paves the way for the development of strategies to exploit molecular spins as quantum sensors.File | Dimensione | Formato | |
---|---|---|---|
BonizzoniNPJQuantInf24.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.69 MB
Formato
Adobe PDF
|
1.69 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.