The dynamics of cellular membrane tension and its role in mechanosensing, which is the ability of cells to respond to physical stimuli, remain incompletely understood, mainly due to the lack of appropriate tools. Here, we report a force-controlled nanopipette-based method that combines fluidic force microscopy with fluorescence imaging for precise manipulation of the cellular membrane tension while monitoring the impact on single-cell mechanosensitivity. The force-controlled nanopipette enables control of the indentation force imposed on the cell cortex as well as of the aspiration pressure applied to the plasma membrane. We show that this setup can be used to concurrently monitor the activation of Piezo1 mechanosensitive ion channels via calcium imaging. Moreover, the spatiotemporal behavior of the tension propagation is assessed with the fluorescent membrane tension probe Flipper-TR, and further dissected using molecular dynamics modeling. Finally, we demonstrate that aspiration and indentation act independently on the cellular mechanobiological machinery, that indentation induces a local pre-tension in the membrane, and that membrane tension stays confined by links to the cytoskeleton.

Dissecting cell membrane tension dynamics and its effect on Piezo1-mediated cellular mechanosensitivity using force-controlled nanopipettes

Gardini, Lucia;Vassalli, Massimo
2024

Abstract

The dynamics of cellular membrane tension and its role in mechanosensing, which is the ability of cells to respond to physical stimuli, remain incompletely understood, mainly due to the lack of appropriate tools. Here, we report a force-controlled nanopipette-based method that combines fluidic force microscopy with fluorescence imaging for precise manipulation of the cellular membrane tension while monitoring the impact on single-cell mechanosensitivity. The force-controlled nanopipette enables control of the indentation force imposed on the cell cortex as well as of the aspiration pressure applied to the plasma membrane. We show that this setup can be used to concurrently monitor the activation of Piezo1 mechanosensitive ion channels via calcium imaging. Moreover, the spatiotemporal behavior of the tension propagation is assessed with the fluorescent membrane tension probe Flipper-TR, and further dissected using molecular dynamics modeling. Finally, we demonstrate that aspiration and indentation act independently on the cellular mechanobiological machinery, that indentation induces a local pre-tension in the membrane, and that membrane tension stays confined by links to the cytoskeleton.
2024
Istituto Nazionale di Ottica - INO - Sede Secondaria di Sesto Fiorentino
File in questo prodotto:
File Dimensione Formato  
s41592-024-02277-8 (1).pdf

accesso aperto

Descrizione: Articolo
Licenza: Creative commons
Dimensione 3.88 MB
Formato Adobe PDF
3.88 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/475430
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact