Quantum annealers have grown in complexity to the point that quantum computations involving a few thousand qubits are now possible. In this paper, with the intentions to show the feasibility of quantum annealing to tackle problems of physical relevance, we used a simple model, compatible with the capability of current quantum annealers, to study the relative stability of graphene vacancy defects. By mapping the crucial interactions that dominate carbon-vacancy interchange onto a quadratic unconstrained binary optimization problem, our approach exploits the ground state as well as the excited states found by the quantum annealer to extract all the possible arrangements of multiple defects on the graphene sheet together with their relative formation energies. This approach reproduces known results and provides a stepping stone towards applications of quantum annealing to problems of physical–chemical interest.

Vacancies in graphene: an application of adiabatic quantum optimization

Siloi, Ilaria;Di Felice, Rosa;
2020

Abstract

Quantum annealers have grown in complexity to the point that quantum computations involving a few thousand qubits are now possible. In this paper, with the intentions to show the feasibility of quantum annealing to tackle problems of physical relevance, we used a simple model, compatible with the capability of current quantum annealers, to study the relative stability of graphene vacancy defects. By mapping the crucial interactions that dominate carbon-vacancy interchange onto a quadratic unconstrained binary optimization problem, our approach exploits the ground state as well as the excited states found by the quantum annealer to extract all the possible arrangements of multiple defects on the graphene sheet together with their relative formation energies. This approach reproduces known results and provides a stepping stone towards applications of quantum annealing to problems of physical–chemical interest.
2020
Istituto Nanoscienze - NANO
Istituto Nanoscienze - NANO - Sede Secondaria Modena
File in questo prodotto:
File Dimensione Formato  
d0cp04037a.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.09 MB
Formato Adobe PDF
2.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2010.05803v1.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Altro tipo di licenza
Dimensione 1.33 MB
Formato Adobe PDF
1.33 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/476481
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact