The increasing availability of quantitative data in archaeo logical studies has prompted the research of Machine Learning methods to support archaeologists in their analysis. This paper considers in par ticular the problem of automatic classification of 3D surface patches of “rubble stones” and “wedges” obtained from Prehistorical and Proto historical walls in Crete. These data come from the W.A.L.(L) Project aimed to query 3D photogrammetric models of ancient architectonical structures in order to extract archaeologically significant features. The principal aim of this paper is to address the issue of a clear semanti cally correspondence between data analysis concepts and archaeology. Classification of stone patches has been performed with several Machine Learning methods, and then feature relevance has been computed for all the classifiers. The results show a good correspondence between the most relevant features of the classification and the qualitative features that human experts adopt typically to classify the wall facing stones.
Feature Relevance in Classification of 3D Stone from Ancient Wall Structures
Buscemi F.;
2023
Abstract
The increasing availability of quantitative data in archaeo logical studies has prompted the research of Machine Learning methods to support archaeologists in their analysis. This paper considers in par ticular the problem of automatic classification of 3D surface patches of “rubble stones” and “wedges” obtained from Prehistorical and Proto historical walls in Crete. These data come from the W.A.L.(L) Project aimed to query 3D photogrammetric models of ancient architectonical structures in order to extract archaeologically significant features. The principal aim of this paper is to address the issue of a clear semanti cally correspondence between data analysis concepts and archaeology. Classification of stone patches has been performed with several Machine Learning methods, and then feature relevance has been computed for all the classifiers. The results show a good correspondence between the most relevant features of the classification and the qualitative features that human experts adopt typically to classify the wall facing stones.File | Dimensione | Formato | |
---|---|---|---|
ICIAP 2023 Feature Relevance.pdf
solo utenti autorizzati
Descrizione: Article
Tipologia:
Versione Editoriale (PDF)
Licenza:
Altro tipo di licenza
Dimensione
2.85 MB
Formato
Adobe PDF
|
2.85 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.