Propylene polymerizations with different ketimide-modified half-titanocene catalysts, Cp’TiCl2(N=CtBu2) [Cp’ = C5H5 (1), C5Me5 (2), Me3SiC5H4 (3)], with MAO as a cocatalyst, were investigated. The obtained polymers were studied in detail by determining their microstructure, molar masses, thermal, and mechanical properties. The Cp*-ketimide, (C5Me5)TiCl2(N=CtBu2) (2), exhibited higher catalytic activities than Cp’TiCl2(N=CtBu2) (1,3), yielding higher molar mass polymers, Mw up to 1400 Kg/mol. All the synthesized polypropylenes (PP) are atactic and highly regioregular, with predominant rrrr pentads, especially PP prepared with catalyst 1. Differential scanning calorimetry (DSC) established that the polymers are fully amorphous aPP, and no melting endotherm events are detected. Glass transition temperatures were detected between −2 and 2 °C. These polypropylenes have been established to be high-performance thermoplastic elastomers endowed with remarkably high ductility, and a tensile strain at break higher than 2000%.

Amorphous Elastomeric Ultra-High Molar Mass Polypropylene in High Yield by Half-Titanocene Catalysts

Losio S.;Bertini F.;Vignali A.;Tritto I.
2024

Abstract

Propylene polymerizations with different ketimide-modified half-titanocene catalysts, Cp’TiCl2(N=CtBu2) [Cp’ = C5H5 (1), C5Me5 (2), Me3SiC5H4 (3)], with MAO as a cocatalyst, were investigated. The obtained polymers were studied in detail by determining their microstructure, molar masses, thermal, and mechanical properties. The Cp*-ketimide, (C5Me5)TiCl2(N=CtBu2) (2), exhibited higher catalytic activities than Cp’TiCl2(N=CtBu2) (1,3), yielding higher molar mass polymers, Mw up to 1400 Kg/mol. All the synthesized polypropylenes (PP) are atactic and highly regioregular, with predominant rrrr pentads, especially PP prepared with catalyst 1. Differential scanning calorimetry (DSC) established that the polymers are fully amorphous aPP, and no melting endotherm events are detected. Glass transition temperatures were detected between −2 and 2 °C. These polypropylenes have been established to be high-performance thermoplastic elastomers endowed with remarkably high ductility, and a tensile strain at break higher than 2000%.
2024
Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" - SCITEC
atactic polypropylene
half-titanocene catalyst
thermoplastic elastomer
UHMWPP
File in questo prodotto:
File Dimensione Formato  
polymers-16-00512-v3.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.38 MB
Formato Adobe PDF
2.38 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/477142
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact