The suborder Criconematina is a large group of ecto- and endoparasitic nematodes, including several species of major agricultural importance. The D2-D3 expansion segments of the 28S nuclear ribosomal RNA gene were amplified and sequenced from 23 nominal and six unidentified species from the genera Mesocriconema, Criconemoides, Ogma, Criconema, Xenocriconemella, Hemicriconemoides, Hemicycliophora, Paratylenchus, Tylenchulus, Trophonema and Sphaeronema, together with outgroup taxa from Tylenchidae (Aglenchus) and Atylenchidae (Eutylenchus). A sequence alignment optimised using the secondary structure model was analysed using maximum parsimony, maximum likelihood and Bayesian inference approaches under two models. All analyses yielded a similar topology with differences primarily in the position of poorly supported clades. Although some molecular trees differ from the previous morphologically based hypotheses of criconematid phylogeny, maximum likelihood tests did not yield statistically significant differences between some of the tested classical morphological and molecular topologies. DNA data support monophyly for the genera Mesocriconema, Hemicriconemoides and Criconema and reject the hypothesis of a single origin of criconematids with a cuticular sheath or 'double cuticle'. Application of the complex model of rRNA evolution, considering paired nucleotides for the stem and unpaired nucleotides for the loop region, resulted in a majority rule consensus Bayesian tree with unresolved relationships between main clades. This lack of resolution is expected by the low number of independently evolving nucleotides. Sequence divergence in this DNA segment between populations of Mesocriconema xenoplax, M. sphaerocephalum and Hemicriconemoides cocophillus suggest the presence of several sibling species under these taxa names.

Phylogeny of Criconematina Siddiqi, 1980 (Nematoda: Tylenchida) based on morphology and D2-D3 expansion segments of the 28S-rRNA gene sequences with application of a secondary structure model.

Vovlas N;
2005

Abstract

The suborder Criconematina is a large group of ecto- and endoparasitic nematodes, including several species of major agricultural importance. The D2-D3 expansion segments of the 28S nuclear ribosomal RNA gene were amplified and sequenced from 23 nominal and six unidentified species from the genera Mesocriconema, Criconemoides, Ogma, Criconema, Xenocriconemella, Hemicriconemoides, Hemicycliophora, Paratylenchus, Tylenchulus, Trophonema and Sphaeronema, together with outgroup taxa from Tylenchidae (Aglenchus) and Atylenchidae (Eutylenchus). A sequence alignment optimised using the secondary structure model was analysed using maximum parsimony, maximum likelihood and Bayesian inference approaches under two models. All analyses yielded a similar topology with differences primarily in the position of poorly supported clades. Although some molecular trees differ from the previous morphologically based hypotheses of criconematid phylogeny, maximum likelihood tests did not yield statistically significant differences between some of the tested classical morphological and molecular topologies. DNA data support monophyly for the genera Mesocriconema, Hemicriconemoides and Criconema and reject the hypothesis of a single origin of criconematids with a cuticular sheath or 'double cuticle'. Application of the complex model of rRNA evolution, considering paired nucleotides for the stem and unpaired nucleotides for the loop region, resulted in a majority rule consensus Bayesian tree with unresolved relationships between main clades. This lack of resolution is expected by the low number of independently evolving nucleotides. Sequence divergence in this DNA segment between populations of Mesocriconema xenoplax, M. sphaerocephalum and Hemicriconemoides cocophillus suggest the presence of several sibling species under these taxa names.
2005
PROTEZIONE DELLE PIANTE
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/47732
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact