Assessing the accuracy of first-principles computational approaches is instrumental to predict electronic excitations in metal nanoclusters with quantitative confidence. Here we describe a validation study on the optical response of a set of monolayer-protected clusters (MPC). The photoabsorption spectra of Ag25(DMBT)18−, Ag24Pt(DMBT)182− and Au24Pt(SC4H9)18, where DMBT is 2,4-dimethylbenzenethiolate and SC4H9 is n-butylthiolate, have been obtained at low temperature and compared with accurate TDDFT calculations. An excellent match between theory and experiment, with typical deviations of less than 0.1 eV, was obtained, thereby validating the accuracy and reliability of the proposed computational framework. Moreover, an analysis of the TDDFT simulations allowed us to ascribe all relevant spectral features to specific transitions between occupied/virtual orbital pairs. The doping effect of Pt on the optical response of these ultrasmall MPC systems was identified and discussed.

Combined experimental and computational study of the photoabsorption of the monodoped and nondoped nanoclusters Au24Pt(SR)18, Ag24Pt(SR)18, and Ag25(SR)18

Sementa, Luca;Fortunelli, Alessandro;
2024

Abstract

Assessing the accuracy of first-principles computational approaches is instrumental to predict electronic excitations in metal nanoclusters with quantitative confidence. Here we describe a validation study on the optical response of a set of monolayer-protected clusters (MPC). The photoabsorption spectra of Ag25(DMBT)18−, Ag24Pt(DMBT)182− and Au24Pt(SC4H9)18, where DMBT is 2,4-dimethylbenzenethiolate and SC4H9 is n-butylthiolate, have been obtained at low temperature and compared with accurate TDDFT calculations. An excellent match between theory and experiment, with typical deviations of less than 0.1 eV, was obtained, thereby validating the accuracy and reliability of the proposed computational framework. Moreover, an analysis of the TDDFT simulations allowed us to ascribe all relevant spectral features to specific transitions between occupied/virtual orbital pairs. The doping effect of Pt on the optical response of these ultrasmall MPC systems was identified and discussed.
2024
Istituto di Chimica dei Composti Organo Metallici - ICCOM - Sede Secondaria Pisa
Istituto per i Processi Chimico-Fisici - IPCF - Sede Secondaria Pisa
first-principles computational approaches
metal nanoclusters
electronic excitations
File in questo prodotto:
File Dimensione Formato  
d4cp00789a.pdf

embargo fino al 07/06/2025

Descrizione: “This document is the Accepted Manuscript version of a Published Work that appeared in final form in https://doi.org/10.1039/d4cp00789a."
Tipologia: Documento in Post-print
Licenza: Altro tipo di licenza
Dimensione 934.59 kB
Formato Adobe PDF
934.59 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Phys. Chem. Chem. Phys., 2024,26, 17569-17576.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 955.36 kB
Formato Adobe PDF
955.36 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/477381
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact