The development of luminescent organic radicals has resulted in materials with excellent optical properties for near-infrared emission. Applications of light generation in this range span from bioimaging to surveillance. Although the unpaired electron arrangements of radicals enable efficient radiative transitions within the doublet-spin manifold in organic light-emitting diodes, their performance is limited by non-radiative pathways introduced in electroluminescence. Here we present a host–guest design for organic light-emitting diodes that exploits energy transfer with up to 9.6% external quantum efficiency for 800 nm emission. The tris(2,4,6-trichlorophenyl)methyl-triphenyl-amine radical guest is energy-matched to the triplet state in a charge-transporting anthracene-derivative host. We show from optical spectroscopy and quantum-chemical modelling that reversible host–guest triplet–doublet energy transfer allows efficient harvesting of host triplet excitons.
Efficient near-infrared organic light-emitting diodes with emission from spin doublet excitons
Giannini, Samuele;
2024
Abstract
The development of luminescent organic radicals has resulted in materials with excellent optical properties for near-infrared emission. Applications of light generation in this range span from bioimaging to surveillance. Although the unpaired electron arrangements of radicals enable efficient radiative transitions within the doublet-spin manifold in organic light-emitting diodes, their performance is limited by non-radiative pathways introduced in electroluminescence. Here we present a host–guest design for organic light-emitting diodes that exploits energy transfer with up to 9.6% external quantum efficiency for 800 nm emission. The tris(2,4,6-trichlorophenyl)methyl-triphenyl-amine radical guest is energy-matched to the triplet state in a charge-transporting anthracene-derivative host. We show from optical spectroscopy and quantum-chemical modelling that reversible host–guest triplet–doublet energy transfer allows efficient harvesting of host triplet excitons.File | Dimensione | Formato | |
---|---|---|---|
Nature Photonics volume 18, pages 905–912 (2024).pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.44 MB
Formato
Adobe PDF
|
1.44 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.