We report the polymorph investigation, crystallographic study and fabrication of organic field-effect transistors (OFETs) in solution-processed thin films of a prototypical organic semiconductor, i.e., 2,7-diheptylbenzo[b]benzo[4,5]thieno[2,3-d]thiophene (C7-BTBT-C7). We found that this molecule self-assembles solely into one type of stable crystal form, regardless of the experimental conditions employed when using conventional and non-conventional methods of crystallization. The integration of blends of C7-BTBT-C7 with polystyrene as active materials in OFETs fabricated using a solution shearing technique led to a field-effect mobility of 1.42 ± 0.45 cm2 V−1 s−1 in the saturation regime when a coating speed of 10 mm s−1 was employed. The intrinsic structural properties control the overlap of the frontier orbitals, thereby affecting the device performance. The interplay between the crystal packing, thin film morphology and uniformity and its impact on the device performance are reported.

From synthesis to device fabrication: elucidating the structural and electronic properties of C7-BTBT-C7

Giannini S.;
2023

Abstract

We report the polymorph investigation, crystallographic study and fabrication of organic field-effect transistors (OFETs) in solution-processed thin films of a prototypical organic semiconductor, i.e., 2,7-diheptylbenzo[b]benzo[4,5]thieno[2,3-d]thiophene (C7-BTBT-C7). We found that this molecule self-assembles solely into one type of stable crystal form, regardless of the experimental conditions employed when using conventional and non-conventional methods of crystallization. The integration of blends of C7-BTBT-C7 with polystyrene as active materials in OFETs fabricated using a solution shearing technique led to a field-effect mobility of 1.42 ± 0.45 cm2 V−1 s−1 in the saturation regime when a coating speed of 10 mm s−1 was employed. The intrinsic structural properties control the overlap of the frontier orbitals, thereby affecting the device performance. The interplay between the crystal packing, thin film morphology and uniformity and its impact on the device performance are reported.
2023
Istituto di Chimica dei Composti Organo Metallici - ICCOM - Sede Secondaria Pisa
File in questo prodotto:
File Dimensione Formato  
d3tc00434a.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.79 MB
Formato Adobe PDF
1.79 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/478181
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact