The paper presents an experimental validation of a method to locate partial discharges (PDs) on power distribution and transmission networks. The method is based on electromagnetic time reversal (EMTR) theory, and it uses a Transmission Line Matrix (TLM) model to describe the propagation of the PD signals in the reversed time. Since PDs are regarded as a symptom of insulation degradation, on-line PD location is considered an important approach to monitoring the integrity of a power distribution network, with the aim of detecting and preventing faults and improving network reliability. In this paper, the EMTR-based method is described and its effectiveness in PD localization using only one measurement point is demonstrated in three real 33 kV power lines. Its effectiveness is proved with and without an on-line electromagnetically noisy environment, and its accuracy is evaluated with respect to different signal-to-noise ratio (SNR) levels of the networks. The validation shows that the method is able to locate PDs with an error of 0.14% with respect to the total length of the line in the absence of noise, and with an error that is always lower than 0.5% for an SNR down to-7 dB.

Application to Real Power Networks of a Method to Locate Partial Discharges Based On Electromagnetic Time Reversal

Ragusa A.
;
Duffy A.;
2022

Abstract

The paper presents an experimental validation of a method to locate partial discharges (PDs) on power distribution and transmission networks. The method is based on electromagnetic time reversal (EMTR) theory, and it uses a Transmission Line Matrix (TLM) model to describe the propagation of the PD signals in the reversed time. Since PDs are regarded as a symptom of insulation degradation, on-line PD location is considered an important approach to monitoring the integrity of a power distribution network, with the aim of detecting and preventing faults and improving network reliability. In this paper, the EMTR-based method is described and its effectiveness in PD localization using only one measurement point is demonstrated in three real 33 kV power lines. Its effectiveness is proved with and without an on-line electromagnetically noisy environment, and its accuracy is evaluated with respect to different signal-to-noise ratio (SNR) levels of the networks. The validation shows that the method is able to locate PDs with an error of 0.14% with respect to the total length of the line in the absence of noise, and with an error that is always lower than 0.5% for an SNR down to-7 dB.
2022
Istituto di iNgegneria del Mare - INM (ex INSEAN)
Cable system
electromagnetic time reversal
fault prevention
partial discharges
power system protection
reliability
TLM modeling
File in questo prodotto:
File Dimensione Formato  
TPWRD3115453.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 747.48 kB
Formato Adobe PDF
747.48 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/478322
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? ND
social impact