Non-alcoholic fatty liver disease (NAFLD) is becoming one of the most important causes of chronic liver disease and the quantification of the liver fat content is of great importance in diagnosing and monitoring NAFLD progression. The non-invasive gold standard for quantifying liver steatosis is magnetic resonance imaging (MRI), but it is too expensive and not easily available. For this reason, ultrasound (US) imaging techniques are increasingly used. The main aim of this study is to develop and to validate a multiparametric system based on US able to assess the percentage of liver fat, producing a result equivalent to that computed by MRI. We have updated a previously proposed US-based image processing tool (DOI: 10.1016/j.ultrasmedbio.2018.03.011.). We tested the software on N=135 US images acquired from patients. In addition, we developed and validated a multiparametric model that combines the US-parameters extracted to predict the liver fat content, using magnetic resonance spectroscopy (MRS) and MRI proton density fat fraction (MRI- PDFF) computed values as a ground truth. We analyzed the inter-operator reproducibility between a technical and a clinical operator. We show the prediction performance of our model compared to MRI computed fat values, expressed as a correlation coefficient of 0.84. Finally, regarding the evaluation of the inter-operator variability we achieved an intraclass correlation coefficient higher than 0.9 for the final score assessed by the two different operators. The proposed system is quite inexpensive, easy to use and may be implemented on any US equipment as a tool for screening and monitoring fatty liver disease.

Non-invasive Quantification of Steatosis: A New Ultrasound based Model to Predict Fatty Liver Content

De Rosa L.;Faita F.
2022

Abstract

Non-alcoholic fatty liver disease (NAFLD) is becoming one of the most important causes of chronic liver disease and the quantification of the liver fat content is of great importance in diagnosing and monitoring NAFLD progression. The non-invasive gold standard for quantifying liver steatosis is magnetic resonance imaging (MRI), but it is too expensive and not easily available. For this reason, ultrasound (US) imaging techniques are increasingly used. The main aim of this study is to develop and to validate a multiparametric system based on US able to assess the percentage of liver fat, producing a result equivalent to that computed by MRI. We have updated a previously proposed US-based image processing tool (DOI: 10.1016/j.ultrasmedbio.2018.03.011.). We tested the software on N=135 US images acquired from patients. In addition, we developed and validated a multiparametric model that combines the US-parameters extracted to predict the liver fat content, using magnetic resonance spectroscopy (MRS) and MRI proton density fat fraction (MRI- PDFF) computed values as a ground truth. We analyzed the inter-operator reproducibility between a technical and a clinical operator. We show the prediction performance of our model compared to MRI computed fat values, expressed as a correlation coefficient of 0.84. Finally, regarding the evaluation of the inter-operator variability we achieved an intraclass correlation coefficient higher than 0.9 for the final score assessed by the two different operators. The proposed system is quite inexpensive, easy to use and may be implemented on any US equipment as a tool for screening and monitoring fatty liver disease.
2022
Istituto di Fisiologia Clinica - IFC
978-1-6654-7813-7
image processing
liver fat content
multiparametric system
NAFLD
quantitative ultrasound
File in questo prodotto:
File Dimensione Formato  
De Rosa 2022 - Non-invasive Quantification of Steatosis A New Ultrasound based Model to Predict Fatty Liver Content - Proceeding IUS2022.pdf

solo utenti autorizzati

Descrizione: Non-invasive Quantification of Steatosis: A New Ultrasound based Model to Predict Fatty Liver Content
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 314.69 kB
Formato Adobe PDF
314.69 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/478963
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact