Laminated ceramic structures in the system Al2O3/Al2O3 + 3Y-TZP (A/AZ) were prepared using a tape casting technique in order to obtain ceramic layers with different compositions and thicknesses. Piezo-spectroscopy was used to evaluate the residual stresses arisen from a calibrated mismatch in thermal expansion coefficients of the layers during the sintering process of the composite. The dependence of the residual stresses in the A and AZ layers on their thickness ratio was established. A microscale ball cratering method was used to investigate the influence that the surface compressive stress can play on the abrasive wear resistance of the composite structures. The results were compared with those obtained with an unstressed reference material prepared either by lamination of pure alumina green-sheets or by cold isostatic pressing of alumina powder. The experimental results have shown that the abrasive wear resistance is higher for samples with compressive residual stresses within the surface regions

Abrasive wear in Ceramic Laminated Composites

G de Portu;
2006

Abstract

Laminated ceramic structures in the system Al2O3/Al2O3 + 3Y-TZP (A/AZ) were prepared using a tape casting technique in order to obtain ceramic layers with different compositions and thicknesses. Piezo-spectroscopy was used to evaluate the residual stresses arisen from a calibrated mismatch in thermal expansion coefficients of the layers during the sintering process of the composite. The dependence of the residual stresses in the A and AZ layers on their thickness ratio was established. A microscale ball cratering method was used to investigate the influence that the surface compressive stress can play on the abrasive wear resistance of the composite structures. The results were compared with those obtained with an unstressed reference material prepared either by lamination of pure alumina green-sheets or by cold isostatic pressing of alumina powder. The experimental results have shown that the abrasive wear resistance is higher for samples with compressive residual stresses within the surface regions
2006
Istituto di Scienza, Tecnologia e Sostenibilità per lo Sviluppo dei Materiali Ceramici - ISSMC (ex ISTEC)
Laminated composites
AL2O3
abrasive wear
residual stresses
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/47920
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact