: To study in vivo the bioactivity of biodegradable magnesium implants and other possible biomaterials, we are proposing a previously unexplored application of PET-CT imaging, using available tracers to follow soft tissue and bone remodelling and immune response in the presence of orthopaedic implants. Female Wistar rats received either implants (Ti6Al7Nb titanium or WE43 magnesium) or corresponding transcortical sham defects into the diaphyseal area of the femurs. Inflammatory response was followed with [18F]FDG and osteogenesis with [18F]NaF, over the period of 1.5 months after surgery. An additional pilot study with [68Ga]NODAGA-RGD tracer specific to αvβ3 integrin expression was performed to follow the angiogenesis for one month. [18F]FDG tracer uptake peaked on day 3 before declining in all groups, with Mg and Ti groups exhibiting overall higher uptake compared to sham. This suggests increased cellular activity and tissue response in the presence of Mg during the initial weeks, with Ti showing a subsequent increase in tracer uptake on day 45, indicating a foreign body reaction. [18F]NaF uptake demonstrated the superior osteogenic potential of Mg compared to Ti, with peak uptake on day 7 for all groups. [68Ga]NODAGA-RGD pilot study revealed differences in tracer uptake trends between groups, particularly the prolonged expression of αvβ3 integrin in the presence of implants. Based on the observed differences in the uptake trends of radiotracers depending on implant material, we suggest that PET-CT is a suitable modality for long-term in vivo assessment of orthopaedic biomaterial biocompatibility and underlying tissue reactions. STATEMENT OF SIGNIFICANCE: The study explores the novel use of positron emission tomography for the assessment of the influence that biomaterials have on the surrounding tissues. Previous related studies have mostly focused on material-related effects such as implant-associated infections or to follow the osseointegration in prosthetics, but the use of PET to evaluate the materials has not been reported before. The approach tests the feasibility of using repeated PET-CT imaging to follow the tissue response over time, potentially improving the methodology for adopting new biomaterials for clinical use.

Assessment of tissue response in vivo: PET-CT imaging of titanium and biodegradable magnesium implants

Riehakainen, Leon;Mota-Silva, Eduarda;Kusmic, Claudia;Panetta, Daniele;Petroni, Debora;Fragnito, Davide;Salvadori, Stefano;Menichetti, Luca
2024

Abstract

: To study in vivo the bioactivity of biodegradable magnesium implants and other possible biomaterials, we are proposing a previously unexplored application of PET-CT imaging, using available tracers to follow soft tissue and bone remodelling and immune response in the presence of orthopaedic implants. Female Wistar rats received either implants (Ti6Al7Nb titanium or WE43 magnesium) or corresponding transcortical sham defects into the diaphyseal area of the femurs. Inflammatory response was followed with [18F]FDG and osteogenesis with [18F]NaF, over the period of 1.5 months after surgery. An additional pilot study with [68Ga]NODAGA-RGD tracer specific to αvβ3 integrin expression was performed to follow the angiogenesis for one month. [18F]FDG tracer uptake peaked on day 3 before declining in all groups, with Mg and Ti groups exhibiting overall higher uptake compared to sham. This suggests increased cellular activity and tissue response in the presence of Mg during the initial weeks, with Ti showing a subsequent increase in tracer uptake on day 45, indicating a foreign body reaction. [18F]NaF uptake demonstrated the superior osteogenic potential of Mg compared to Ti, with peak uptake on day 7 for all groups. [68Ga]NODAGA-RGD pilot study revealed differences in tracer uptake trends between groups, particularly the prolonged expression of αvβ3 integrin in the presence of implants. Based on the observed differences in the uptake trends of radiotracers depending on implant material, we suggest that PET-CT is a suitable modality for long-term in vivo assessment of orthopaedic biomaterial biocompatibility and underlying tissue reactions. STATEMENT OF SIGNIFICANCE: The study explores the novel use of positron emission tomography for the assessment of the influence that biomaterials have on the surrounding tissues. Previous related studies have mostly focused on material-related effects such as implant-associated infections or to follow the osseointegration in prosthetics, but the use of PET to evaluate the materials has not been reported before. The approach tests the feasibility of using repeated PET-CT imaging to follow the tissue response over time, potentially improving the methodology for adopting new biomaterials for clinical use.
2024
Istituto di Fisiologia Clinica - IFC
Istituto di Endocrinologia e Oncologia Sperimentale ''G. Salvatore'' - IEOS
Angiogenesis
Biocompatibility
Biodegradable magnesium
Implants
In vivo imaging
Inflammation
Osteogenesis
PET
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/479821
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact