: The design of optimized radiofrequency (RF) coils is a fundamental task for maximizing the signal-to-noise ratio (SNR) in Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectroscopy (MRS) applications. An efficient coil should be designed by minimizing the coil noise with respect to the sample noise, since coil conductor resistance affects data quality by reducing the SNR, especially for coils tuned to a low frequency. Such conductor losses strongly depend on the frequency (due to the skin effect) and on the conductor cross-sectional shape (strip or wire). This paper reviews the different methods for estimating conductor losses in RF coils for MRI/MRS applications, comprising analytical formulations, theoretical/experimental hybrid approaches and full-wave simulations. Moreover, the different strategies for minimizing such losses, including the use of Litz wire, cooled and superconducting coils, are described. Finally, recent emerging technologies in RF coil design are briefly reviewed.

Conductor Losses in Radiofrequency Coils for Magnetic Resonance below 3T: Estimation Methods and Minimization Strategies

Giovannetti, Giulio
;
2023

Abstract

: The design of optimized radiofrequency (RF) coils is a fundamental task for maximizing the signal-to-noise ratio (SNR) in Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectroscopy (MRS) applications. An efficient coil should be designed by minimizing the coil noise with respect to the sample noise, since coil conductor resistance affects data quality by reducing the SNR, especially for coils tuned to a low frequency. Such conductor losses strongly depend on the frequency (due to the skin effect) and on the conductor cross-sectional shape (strip or wire). This paper reviews the different methods for estimating conductor losses in RF coils for MRI/MRS applications, comprising analytical formulations, theoretical/experimental hybrid approaches and full-wave simulations. Moreover, the different strategies for minimizing such losses, including the use of Litz wire, cooled and superconducting coils, are described. Finally, recent emerging technologies in RF coil design are briefly reviewed.
2023
Istituto di Fisiologia Clinica - IFC
Magnetic Resonance
RF coils
conductor losses
signal-to-noise ratio
skin effect
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/479862
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact