Scanning tunneling microscopy and local conductance mapping show spin-state coexistence in bilayer films of Fe[(H(2)Bpz(2))(2)bpy] on Au(111) that is independent of temperature between 131 and 300 K. This modification of bulk behavior is attributed in part to the unique packing constraints of the bilayer film that promote deviations from bulk behavior. The local density of states measured for different spin states shows that high-spin molecules have a smaller transport gap than low-spin molecules and are in agreement with density functional theory calculations.
Modification of Molecular Spin Crossover in Ultrathin Films
Calzolari A;
2013
Abstract
Scanning tunneling microscopy and local conductance mapping show spin-state coexistence in bilayer films of Fe[(H(2)Bpz(2))(2)bpy] on Au(111) that is independent of temperature between 131 and 300 K. This modification of bulk behavior is attributed in part to the unique packing constraints of the bilayer film that promote deviations from bulk behavior. The local density of states measured for different spin states shows that high-spin molecules have a smaller transport gap than low-spin molecules and are in agreement with density functional theory calculations.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


