Abstract: The aging process of wine is influenced by various factors, including the presence of oxygen, the temperature, and the storage conditions. While oxygen can have both positive and negative effects on wine quality, temperature fluctuations during storage can impact its chemical composition. This study has investigated the aging of Merlot and Sangiovese wines under traditional cellar conditions and underwater, exploring the influence of storage parameters on their chemical evolution. Analyzing parameters such as temperature, pressure, and chemical composition, the research revealed subtle but significant changes in the wines over time. Both wines showed a gradual reduction in total phenols, anthocyanins, non-flavonoid compounds, and total sulfur dioxide, irrespective of the storage conditions. Preliminary findings suggested that aging wine underwater does not induce significant alterations in its fundamental characteristics compared to traditional cellar aging. These results contribute to a deeper understanding of wine aging processes and highlight the importance of storage conditions in preserving wine quality. Further research is needed to fully elucidate the complexities of underwater aging and its broader implications for wine production.

Exploring red wine aging: comparative analysis of cellar and sea underwater aging on chemical composition and quality.

Massimo Fedel;
2024

Abstract

Abstract: The aging process of wine is influenced by various factors, including the presence of oxygen, the temperature, and the storage conditions. While oxygen can have both positive and negative effects on wine quality, temperature fluctuations during storage can impact its chemical composition. This study has investigated the aging of Merlot and Sangiovese wines under traditional cellar conditions and underwater, exploring the influence of storage parameters on their chemical evolution. Analyzing parameters such as temperature, pressure, and chemical composition, the research revealed subtle but significant changes in the wines over time. Both wines showed a gradual reduction in total phenols, anthocyanins, non-flavonoid compounds, and total sulfur dioxide, irrespective of the storage conditions. Preliminary findings suggested that aging wine underwater does not induce significant alterations in its fundamental characteristics compared to traditional cellar aging. These results contribute to a deeper understanding of wine aging processes and highlight the importance of storage conditions in preserving wine quality. Further research is needed to fully elucidate the complexities of underwater aging and its broader implications for wine production.
2024
Istituto di fotonica e nanotecnologie - IFN - Sede Secondaria Padova
TDLAS; anthocyanins; phenols; refinement; thermodynamic analysis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/480631
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact