Ad-hoc interface PCBs are today the standard connection between cryogenic cabling and quantum chips. Besides low-loss and low-temperature-dependent-dielectric-permittivity materials, FR4 provides a low-cost solution for fabrication of cryogenic PCBs. Here, we report on an effective way to evaluate the dielectric performance of a FR4 laminate used as substrate for cryogenic microwave PCBs. We designed a coplanar waveguide {\lambda}/2 open-circuit series resonator and we fabricated the PCB using a low-cost manufacturing process. Such a geometry allows to exploit the resonance peak of the resonator to measure the variation of the complex dielectric permittivity as a function of the temperature. Resonance peak frequency and magnitude were used as sensing parameters for the real part of dielectric permittivity and dielectric loss tangent, respectively. We estimated a 9 % reduction of the real part of the dielectric permittivity and a 70 % reduction of the dielectric loss tangent in the temperature range from 300 to 4 K. The proposed approach can be immediately extended to the detection of cryogenic temperature-dependent dielectric performance of any kind on substrate.

Estimation of the FR4 Microwave Dielectric Properties at Cryogenic Temperature for Quantum-Chip-Interface PCBs Design

Paghi, Alessandro;Puglia, Claudio;De Simoni, Giorgio;Greco, Angelo;Giazotto, Francesco
2024

Abstract

Ad-hoc interface PCBs are today the standard connection between cryogenic cabling and quantum chips. Besides low-loss and low-temperature-dependent-dielectric-permittivity materials, FR4 provides a low-cost solution for fabrication of cryogenic PCBs. Here, we report on an effective way to evaluate the dielectric performance of a FR4 laminate used as substrate for cryogenic microwave PCBs. We designed a coplanar waveguide {\lambda}/2 open-circuit series resonator and we fabricated the PCB using a low-cost manufacturing process. Such a geometry allows to exploit the resonance peak of the resonator to measure the variation of the complex dielectric permittivity as a function of the temperature. Resonance peak frequency and magnitude were used as sensing parameters for the real part of dielectric permittivity and dielectric loss tangent, respectively. We estimated a 9 % reduction of the real part of the dielectric permittivity and a 70 % reduction of the dielectric loss tangent in the temperature range from 300 to 4 K. The proposed approach can be immediately extended to the detection of cryogenic temperature-dependent dielectric performance of any kind on substrate.
2024
Istituto Nanoscienze - NANO
INFM
cryogenic, dielectric permittivity, FR4, loss tangent, quantum, temperature
File in questo prodotto:
File Dimensione Formato  
2310.01171v1.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Altro tipo di licenza
Dimensione 680.17 kB
Formato Adobe PDF
680.17 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/480882
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact