We report on a new class of hybrid electronic devices based on a DNA nucleoside (deoxyguanosine lipophilic derivative) whose assembled polymeric ribbons interconnect a submicron metallic gate. The device exhibits large conductivity at room temperature, rectifying behavior and strong current-voltage hysteresis. The transport mechanism through the molecules is investigated by comparing films with different self-assembling morphology. We found that the main transport mechanism is connected to pi-pi interactions between guanosine molecules and to the formation of a strong dipole along ribbons, consistently with the results of our first-principles calculations.

Biomolecular electronic devices based on self-organized deoxyguanosine nanocrystals

Di Felice R;Calzolari A;
2002

Abstract

We report on a new class of hybrid electronic devices based on a DNA nucleoside (deoxyguanosine lipophilic derivative) whose assembled polymeric ribbons interconnect a submicron metallic gate. The device exhibits large conductivity at room temperature, rectifying behavior and strong current-voltage hysteresis. The transport mechanism through the molecules is investigated by comparing films with different self-assembling morphology. We found that the main transport mechanism is connected to pi-pi interactions between guanosine molecules and to the formation of a strong dipole along ribbons, consistently with the results of our first-principles calculations.
2002
Istituto Nanoscienze - NANO
Istituto Nanoscienze - NANO
1-57331-410-2
molecular electronic
DNA nucleosides
self-assembly electronic devices
transport
DFT
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/4812
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 17
social impact