A solid-state polymer electrolyte (SPE) could be a viable alternative in order to reduce polysulfide mobility and to mitigate the shuttle effect in lithium–sulfur batteries. In this work, single lithium-ion conducting solid polymer electrolytes (SLIC-SPEs) based on a lithiated Nafion membrane have been prepared and characterized for such a purpose. In the search for organic aprotic swelling solvents that do not cause instability or phase separation problems in the membrane and are suitable for use in lithium–sulfur batteries, only a few were found. They included a mixture of ethylene carbonate (EC) and propylene carbonate (PC), and glyme molecules that did not cause undesirable leaching of the solvent during thermal cycling. A thorough and systematic study of lithium-ion transport was conducted on the swollen membranes by pulsed-field gradient nuclear magnetic resonance (PFG-NMR) and electrochemical impedance spectroscopy (EIS), while the mechanical properties have been tested by dynamic mechanical analysis (DMA). A combination with gas phase infiltrated sulfur–carbon composite cathodes did not only enable the use of carbonate-based solvents in a quasi-solid-state lithium sulfur full cell, but also allow almost complete utilization of the active material without the need for liquid electrolyte additions. Carbonate plasticized Nafion electrolyte improves safety as it is non-toxic, high-boiling and non-flammable. The material combination of a sulfur embedded cathode and ionomer/EC/PC thus opens the way to applications in the field of thin, mechanically flexible and safe high-energy batteries for smart textiles

Carbonate swollen lithiated Nafion electrolyte for quasi-solid-state lithium–sulfur batteries

Lufrano, Ernestino
Primo
;
Tuccillo, Mariarosaria
Ultimo
;
Brutti, Sergio;Nicotera, Isabella;
2024

Abstract

A solid-state polymer electrolyte (SPE) could be a viable alternative in order to reduce polysulfide mobility and to mitigate the shuttle effect in lithium–sulfur batteries. In this work, single lithium-ion conducting solid polymer electrolytes (SLIC-SPEs) based on a lithiated Nafion membrane have been prepared and characterized for such a purpose. In the search for organic aprotic swelling solvents that do not cause instability or phase separation problems in the membrane and are suitable for use in lithium–sulfur batteries, only a few were found. They included a mixture of ethylene carbonate (EC) and propylene carbonate (PC), and glyme molecules that did not cause undesirable leaching of the solvent during thermal cycling. A thorough and systematic study of lithium-ion transport was conducted on the swollen membranes by pulsed-field gradient nuclear magnetic resonance (PFG-NMR) and electrochemical impedance spectroscopy (EIS), while the mechanical properties have been tested by dynamic mechanical analysis (DMA). A combination with gas phase infiltrated sulfur–carbon composite cathodes did not only enable the use of carbonate-based solvents in a quasi-solid-state lithium sulfur full cell, but also allow almost complete utilization of the active material without the need for liquid electrolyte additions. Carbonate plasticized Nafion electrolyte improves safety as it is non-toxic, high-boiling and non-flammable. The material combination of a sulfur embedded cathode and ionomer/EC/PC thus opens the way to applications in the field of thin, mechanically flexible and safe high-energy batteries for smart textiles
2024
Istituto dei Sistemi Complessi - ISC
Istituto per la Microelettronica e Microsistemi - IMM
Istituto di Tecnologie Avanzate per l'Energia - ITAE
-
File in questo prodotto:
File Dimensione Formato  
d3ta06398d.pdf

solo utenti autorizzati

Descrizione: i-solid-state lithium–sulfur batteries
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.14 MB
Formato Adobe PDF
2.14 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
NAFION membrane in Li_2023_03_02_SB.pdf

Open Access dal 14/03/2025

Descrizione: This is the Author Accepted Manuscript version of the following paper: Carbonate swollen lithiated Nafion electrolyte for quasi-solid-state lithium–sulfur batteriesAuthors. Brigitta Sievert, Ernestino Lufrano, Martina Gerle, Mariarosaria Tuccillo,Indro Biswas, Cataldo Simari, Sergio Brutti, Maryam Nojabaee, Isabella Nicotera and K. Andreas Friedrich. 2024Peer‐reviewed and accepted for publication in: Journal of Materials Chemistry A, 2024, 12(15), pp. 9002–9016DOI: 10.1039/d3ta06398d
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.59 MB
Formato Adobe PDF
1.59 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/481261
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact