Cr, Fe, Rb, Ba and U were determined by inductively coupled plasma sector field mass spectrometry (ICP-SFMS) in various sections of the 3,270 m deep ice core recently drilled at Dome C on the high East Antarctic plateau as part of the EPICA program. The sections were dated from 263 kyr bp (depth of 2,368 m) to 672 kyr bp (depth of 3,062 m). When combined with the data previously obtained by Gabrielli and co-workers for the upper 2,193 m of the core, it gives a detailed record for these elements during a 672-kyr period from the Holocene back to Marine Isotopic Stage (MIS) 16.2. Concentrations and fallout fluxes of all elements are found to be highly variable with low values during the successive interglacial periods and much higher values during the coldest periods of the last eight climatic cycles. Crustal enrichment factors indicates that rock and soil dust is the dominant source for Fe, Rb, Ba and U whatever the period and for Cr during the glacial maxima. The relationship between Cr, Fe, Rb, Ba and U concentrations and the deuterium content of the ice appears to be similar before and after the Mid-Brunhes Event (MBE, around 430 kyr bp). Mean concentration values observed during the successive interglacials from the Holocene to MIS 15.5 appear to vary from one interglacial to another at least for part of the elements. Concentrations observed during the successive glacial maxima suggest a decreasing trend from the most recent glacial maxima (MIS 2.2 and 4.2) to the oldest glacial maxima such as MIS 14.2, 14.4 and 16.2, which could be linked with changes in the size distribution of dust particles transported from mid-latitude areas to the East Antarctic ice cap.
Climate-related variations in crustal trace elements in Dome C (East Antarctica) ice during the past 671 kyr.
Barbante C;Cescon P;Cozzi G;
2009
Abstract
Cr, Fe, Rb, Ba and U were determined by inductively coupled plasma sector field mass spectrometry (ICP-SFMS) in various sections of the 3,270 m deep ice core recently drilled at Dome C on the high East Antarctic plateau as part of the EPICA program. The sections were dated from 263 kyr bp (depth of 2,368 m) to 672 kyr bp (depth of 3,062 m). When combined with the data previously obtained by Gabrielli and co-workers for the upper 2,193 m of the core, it gives a detailed record for these elements during a 672-kyr period from the Holocene back to Marine Isotopic Stage (MIS) 16.2. Concentrations and fallout fluxes of all elements are found to be highly variable with low values during the successive interglacial periods and much higher values during the coldest periods of the last eight climatic cycles. Crustal enrichment factors indicates that rock and soil dust is the dominant source for Fe, Rb, Ba and U whatever the period and for Cr during the glacial maxima. The relationship between Cr, Fe, Rb, Ba and U concentrations and the deuterium content of the ice appears to be similar before and after the Mid-Brunhes Event (MBE, around 430 kyr bp). Mean concentration values observed during the successive interglacials from the Holocene to MIS 15.5 appear to vary from one interglacial to another at least for part of the elements. Concentrations observed during the successive glacial maxima suggest a decreasing trend from the most recent glacial maxima (MIS 2.2 and 4.2) to the oldest glacial maxima such as MIS 14.2, 14.4 and 16.2, which could be linked with changes in the size distribution of dust particles transported from mid-latitude areas to the East Antarctic ice cap.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.