We describe a first experiment on the identification and extraction of computer-interpretable guideline (CIG) components (activities, actors and consumed artifacts) from clinical documents, based on clinical entity recognition techniques. We rely on MetaMap and the UMLS Metathesaurus to provide lexical information, and study the impact of clinical document syntax and semantics on activity recognition.

Automated Activity Recognition in Clinical Documents

Cardillo E.;
2013

Abstract

We describe a first experiment on the identification and extraction of computer-interpretable guideline (CIG) components (activities, actors and consumed artifacts) from clinical documents, based on clinical entity recognition techniques. We rely on MetaMap and the UMLS Metathesaurus to provide lexical information, and study the impact of clinical document syntax and semantics on activity recognition.
2013
Istituto di informatica e telematica - IIT - Sede Secondaria Arcavacata di Rende
Clinical entity recognition, Computer interpretable guideline, UMLS Metathesaurus
File in questo prodotto:
File Dimensione Formato  
I13-1160.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Nessuna licenza dichiarata (non attribuibile a prodotti successivi al 2023)
Dimensione 197.56 kB
Formato Adobe PDF
197.56 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/481922
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact