: Lipoxygenases make several biological functions in cells, based on the products of the catalyzed reactions. In diatoms, microalgae ubiquitous in aquatic ecosystems, lipoxygenases have been noted for the oxygenation of fatty acids with the production of oxylipins, which are involved in many physiological and pathological processes in marine organisms. The interest in diatoms' lipoxygenases and oxylipins has increased due to their possible biotechnological applications, ranging from ecology to medicine. We investigated using bioinformatics and molecular docking tools the lipoxygenases of diatoms and the possible interaction with substrates. A large-scale analysis of sequence resources allowed us to retrieve 45 sequences of lipoxygenases from diatoms. We compared and analyzed the sequences by multiple alignments and phylogenetic trees, suggesting the possible clustering in phylogenetic groups. Then, we modelled the 3D structure of representative enzymes from the different groups and investigated in detail the structural and functional properties by docking simulations with possible substrates. The results allowed us to propose a classification of the lipoxygenases from diatoms based on their sequence features, which may be reflected in specific structural differences and possible substrate specificity.

Structural and Functional Characterization of Lipoxygenases from Diatoms by Bioinformatics and Modelling Studies

Deborah Giordano
Primo
;
Angelo Facchiano
Ultimo
2024

Abstract

: Lipoxygenases make several biological functions in cells, based on the products of the catalyzed reactions. In diatoms, microalgae ubiquitous in aquatic ecosystems, lipoxygenases have been noted for the oxygenation of fatty acids with the production of oxylipins, which are involved in many physiological and pathological processes in marine organisms. The interest in diatoms' lipoxygenases and oxylipins has increased due to their possible biotechnological applications, ranging from ecology to medicine. We investigated using bioinformatics and molecular docking tools the lipoxygenases of diatoms and the possible interaction with substrates. A large-scale analysis of sequence resources allowed us to retrieve 45 sequences of lipoxygenases from diatoms. We compared and analyzed the sequences by multiple alignments and phylogenetic trees, suggesting the possible clustering in phylogenetic groups. Then, we modelled the 3D structure of representative enzymes from the different groups and investigated in detail the structural and functional properties by docking simulations with possible substrates. The results allowed us to propose a classification of the lipoxygenases from diatoms based on their sequence features, which may be reflected in specific structural differences and possible substrate specificity.
2024
Istituto di Scienze dell'Alimentazione - ISA
diatoms
docking analysis
lipoxygenase
protein modelling
sequence clustering
File in questo prodotto:
File Dimensione Formato  
biomolecules-14-00276.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.3 MB
Formato Adobe PDF
4.3 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/482081
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact