Nonlocal thermoelectricity is proposed as a direct probe of interactions, nonthermal states, and the effect of correlations in the nonequilibrium heat transport between 1D quantum channels. In copropagating quantum Hall edge states contacted at different temperatures, the nonlocal thermoelectrical response is only expected if the electron-electron interaction mediates the heat exchange directly measuring the interaction strength. Considering the low-energy limit of zero-range interactions, we analytically solve the charge and energy currents of a nonequilibrium interacting system, determining the universal scaling law in terms of an interaction-dependent energy-relaxation length. Further, a setup with two controllable quantum point contacts allows thermoelectricity to monitor the thermalization of an interacting system as well as the fundamental role of cross-correlations in the heat exchange at intermediate length scales.

Nonlocal thermoelectric detection of interaction and correlations in edge states

Braggio A.
;
Carrega M.;
2024

Abstract

Nonlocal thermoelectricity is proposed as a direct probe of interactions, nonthermal states, and the effect of correlations in the nonequilibrium heat transport between 1D quantum channels. In copropagating quantum Hall edge states contacted at different temperatures, the nonlocal thermoelectrical response is only expected if the electron-electron interaction mediates the heat exchange directly measuring the interaction strength. Considering the low-energy limit of zero-range interactions, we analytically solve the charge and energy currents of a nonequilibrium interacting system, determining the universal scaling law in terms of an interaction-dependent energy-relaxation length. Further, a setup with two controllable quantum point contacts allows thermoelectricity to monitor the thermalization of an interacting system as well as the fundamental role of cross-correlations in the heat exchange at intermediate length scales.
2024
Istituto Nanoscienze - NANO
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
Nonlocal Thermoelectricity, Integer quantum Hall, Luttinger liquid, Non-equilibrium physics, Electron interaction
File in questo prodotto:
File Dimensione Formato  
2024_PhysRevResearch.6.L012049.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 820.94 kB
Formato Adobe PDF
820.94 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/482541
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact