The thermochemical reaction of ammonium carbamate (AC) holds significant potential for low-grade heat utilization. However, the insufficient understanding of reaction kinetics limits its further applications. Therefore, a detailed study on the kinetic mechanism of AC decomposition was conducted using both the model-free and model-fitting thermal analysis methods with kinetic data from multiple heating program experiments. The results obtained from various methods are consistent, supporting the concept that AC decomposition is a single-step controlled multi-step reaction. The activation energy E, preexponential factor A, and most probable reaction model were determined to be 56.38 kJ∙mol−1, 2.75 × 106 s−1, f(α)=(1-α)0.7811, respectively. The reaction mechanism can be hypothesized as involving the rapid generation of numerous nucleation sites on the surface of solid AC, where surface reactions occur, with the movement of reaction interface governing the reaction rate. Consequently, a kinetic equation accounting for the AC decomposition was developed and evaluated, and the heat absorption specific power under different temperature conditions was predicted.

Study on the thermal decomposition kinetics of ammonium carbamate for low-grade heat utilization

Peruzzini, Maurizio;Barzagli, Francesco
2024

Abstract

The thermochemical reaction of ammonium carbamate (AC) holds significant potential for low-grade heat utilization. However, the insufficient understanding of reaction kinetics limits its further applications. Therefore, a detailed study on the kinetic mechanism of AC decomposition was conducted using both the model-free and model-fitting thermal analysis methods with kinetic data from multiple heating program experiments. The results obtained from various methods are consistent, supporting the concept that AC decomposition is a single-step controlled multi-step reaction. The activation energy E, preexponential factor A, and most probable reaction model were determined to be 56.38 kJ∙mol−1, 2.75 × 106 s−1, f(α)=(1-α)0.7811, respectively. The reaction mechanism can be hypothesized as involving the rapid generation of numerous nucleation sites on the surface of solid AC, where surface reactions occur, with the movement of reaction interface governing the reaction rate. Consequently, a kinetic equation accounting for the AC decomposition was developed and evaluated, and the heat absorption specific power under different temperature conditions was predicted.
2024
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
Low-grade heat utilization, Reaction kinetics, Thermogravimetric analysis, Ammonium carbamate, Thermal decomposition, Reaction mechanism
File in questo prodotto:
File Dimensione Formato  
Thermochimica Acta 739 (2024) 179809.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.8 MB
Formato Adobe PDF
2.8 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pre-proof-Study on the thermal decomposition kinetics of ammonium carbamate for low-grade heat utilization.pdf

embargo fino al 02/07/2026

Descrizione: This document is the Accepted Manuscript version of a Published Work that appeared in final form in https://doi.org/10.1016/j.tca.2024.179809
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 1.37 MB
Formato Adobe PDF
1.37 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/482801
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact