: Alteration of the microbiota-gut-brain axis has been recently recognized as a possible contributor to the physiopathology of autism spectrum disorder (ASD). In this context, microRNA (miRNAs) dysfunction, implicated both in several neuropathological conditions including ASD and in different gastrointestinal disorders (GIDs), could represent an important modulating factor. In this contextual framework, we studied the transcriptional profile of specific circulating miRNAs associated with both ASD (miR-197-5p, miR-424-5p, miR-500a-5p, miR-664a-5p) and GID (miR-21-5p, miR-320a-5p, miR-31-5p, miR-223-5p) in a group of pre-schoolers with ASD and in typically developing (TD) peers. In the ASD group, we also assessed the same miRNAs after a 6-month supplementation with probiotics and their correlation with plasma levels of zonulin and lactoferrin. At baseline, the expression of miRNAs involved in ASD were significantly reduced in ASD pre-schoolers vs. TD controls. Regarding the miRNAs involved in GID, the expression levels of miR-320-5p, miR-31-5p, and miR-223-5p were significantly higher in ASD than in TD subjects, whereas miR-21-5p showed significantly reduced expression in the ASD group vs. TD group. Supplementation with probiotics did not significantly change the expression of miRNAs in the ASD population. We found a significative negative correlation between zonulin and miR-197-5p and miR-21-5p at baseline, as well as between lactoferrin and miR-223-5p after 6 months of probiotic supplementation. Our study confirms the presence of an altered profile of the miRNAs investigated in ASD versus TD peers that was not modified by supplementation with probiotics.
Expression of miRNAs in Pre-Schoolers with Autism Spectrum Disorders Compared with Typically Developing Peers and Its Effects after Probiotic Supplementation
Guiducci L.Co-primo
;Cabiati M.Co-primo
;Prosperi M.;Morales M. A.;Del Ry S.Ultimo
2023
Abstract
: Alteration of the microbiota-gut-brain axis has been recently recognized as a possible contributor to the physiopathology of autism spectrum disorder (ASD). In this context, microRNA (miRNAs) dysfunction, implicated both in several neuropathological conditions including ASD and in different gastrointestinal disorders (GIDs), could represent an important modulating factor. In this contextual framework, we studied the transcriptional profile of specific circulating miRNAs associated with both ASD (miR-197-5p, miR-424-5p, miR-500a-5p, miR-664a-5p) and GID (miR-21-5p, miR-320a-5p, miR-31-5p, miR-223-5p) in a group of pre-schoolers with ASD and in typically developing (TD) peers. In the ASD group, we also assessed the same miRNAs after a 6-month supplementation with probiotics and their correlation with plasma levels of zonulin and lactoferrin. At baseline, the expression of miRNAs involved in ASD were significantly reduced in ASD pre-schoolers vs. TD controls. Regarding the miRNAs involved in GID, the expression levels of miR-320-5p, miR-31-5p, and miR-223-5p were significantly higher in ASD than in TD subjects, whereas miR-21-5p showed significantly reduced expression in the ASD group vs. TD group. Supplementation with probiotics did not significantly change the expression of miRNAs in the ASD population. We found a significative negative correlation between zonulin and miR-197-5p and miR-21-5p at baseline, as well as between lactoferrin and miR-223-5p after 6 months of probiotic supplementation. Our study confirms the presence of an altered profile of the miRNAs investigated in ASD versus TD peers that was not modified by supplementation with probiotics.File | Dimensione | Formato | |
---|---|---|---|
Expression of miRNAs in Pre-Schoolers with Autism Spectrum Disorders Compared with Typically Developing Peers and Its Effects after Probiotic Supplementation.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
471.83 kB
Formato
Adobe PDF
|
471.83 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.