Introduction: The fluctuations of the intracellular Ca2+ concentration ([Ca2+]i) are key physiological signals for cell function under normal conditions and can undergo profound alterations in disease states, as high blood pressure due to endocrine disorders like primary aldosteronism (PA). However, when assessing such fluctuations several parameters in the Ca2+ signal dynamics need to be considered, which renders their assessment challenging. Aim: Aim to develop an observer-independent custom-made pipeline to analyze Ca2+ dynamics in terms of frequency and peak parameters, as amplitude, full width at half maximum (FWHM) and area under the curve (AUC). Methods: We applied a custom-made methodology to aldosterone-producing adenoma (APA) and APA adjacent cells (AAC) and found this pipeline to be suitable for monitoring and processing a wide-range of [Ca2+]i events in these cell types delivering reproducible results. Conclusion: The designed pipeline can provide a useful tool for [Ca2+]i signal analysis that allows comparisons of Ca2+ dynamics not only in PA, but in other cell phenotypes that are relevant for the regulation of blood pressure.

Intracellular Calcium Dynamics in Primary Human Adrenocortical Cells Deciphered with a Novel Pipeline

Pallafacchina G.;
2024

Abstract

Introduction: The fluctuations of the intracellular Ca2+ concentration ([Ca2+]i) are key physiological signals for cell function under normal conditions and can undergo profound alterations in disease states, as high blood pressure due to endocrine disorders like primary aldosteronism (PA). However, when assessing such fluctuations several parameters in the Ca2+ signal dynamics need to be considered, which renders their assessment challenging. Aim: Aim to develop an observer-independent custom-made pipeline to analyze Ca2+ dynamics in terms of frequency and peak parameters, as amplitude, full width at half maximum (FWHM) and area under the curve (AUC). Methods: We applied a custom-made methodology to aldosterone-producing adenoma (APA) and APA adjacent cells (AAC) and found this pipeline to be suitable for monitoring and processing a wide-range of [Ca2+]i events in these cell types delivering reproducible results. Conclusion: The designed pipeline can provide a useful tool for [Ca2+]i signal analysis that allows comparisons of Ca2+ dynamics not only in PA, but in other cell phenotypes that are relevant for the regulation of blood pressure.
2024
Istituto di Neuroscienze - IN - Sede Secondaria Padova
Adrenocortical cells
Aldosterone producing Adenoma
Calcium peak detection
Calcium signal decoding
Intracellular calcium dynamics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/484981
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact