Platinum (Pt) nanocatalysts are essential for facilitating the cathodic oxygen reduction reaction in proton exchange membrane fuel cells but suffer from a trade-off between activity and durability. Here we present the design of a fine nanocatalyst comprising Pt nanoparticles with sparsely embedded cobalt oxide clusters (CoOx@Pt). This design exploits the strong Pt/oxide interaction, which grants the catalyst its high structural and chemical durability without sacrificing activity. The CoOx@Pt nanocatalyst delivers a high initial mass activity of 1.10 A mgPt−1, a rated power density of 1.04 W cm−2 and a Pt utilization of 10.4 W mgPt−1 in a membrane electrode assembly. It exhibits a notably high durability that features a mass activity retention of 88.2%, a voltage loss of 13.3 mV at 0.8 A cm−2 and a small rated power loss of 7.5% after accelerated stress testing. This durability could offer a long projected lifetime of 15,000 hours and may greatly reduce the lifetime-adjusted cost. (Figure presented.)

Embedded oxide clusters stabilize sub-2 nm Pt nanoparticles for highly durable fuel cells

Sementa, Luca;Fortunelli, Alessandro;
2024

Abstract

Platinum (Pt) nanocatalysts are essential for facilitating the cathodic oxygen reduction reaction in proton exchange membrane fuel cells but suffer from a trade-off between activity and durability. Here we present the design of a fine nanocatalyst comprising Pt nanoparticles with sparsely embedded cobalt oxide clusters (CoOx@Pt). This design exploits the strong Pt/oxide interaction, which grants the catalyst its high structural and chemical durability without sacrificing activity. The CoOx@Pt nanocatalyst delivers a high initial mass activity of 1.10 A mgPt−1, a rated power density of 1.04 W cm−2 and a Pt utilization of 10.4 W mgPt−1 in a membrane electrode assembly. It exhibits a notably high durability that features a mass activity retention of 88.2%, a voltage loss of 13.3 mV at 0.8 A cm−2 and a small rated power loss of 7.5% after accelerated stress testing. This durability could offer a long projected lifetime of 15,000 hours and may greatly reduce the lifetime-adjusted cost. (Figure presented.)
2024
Istituto di Chimica dei Composti Organo Metallici - ICCOM - Sede Secondaria Pisa
Istituto per i Processi Chimico-Fisici - IPCF - Sede Secondaria Pisa
Engineering controlled terms Cobalt compounds; Economic and social effects; Electrolytic reduction; Metal nanoparticles; Nanocatalysts; Platinum; Platinum compounds; Proton exchange membrane fuel cells (PEMFC)
File in questo prodotto:
File Dimensione Formato  
s41929-024-01180-x-EarlyView.pdf

embargo fino al 01/01/2025

Descrizione: “This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at:https://doi.org/10.1038/s41929-024-01180-x".
Tipologia: Documento in Post-print
Licenza: Altro tipo di licenza
Dimensione 2.29 MB
Formato Adobe PDF
2.29 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
PengNatureCatal2024-Ms&SI.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 6.59 MB
Formato Adobe PDF
6.59 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/485181
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact