Triterpenoids, such as ganoderic acid, and polysaccharides, including β-D-glucans, α-D-glucans, and α-D-mannans, are the main secondary metabolites of the medicinal fungus Ganoderma lucidum. There is evidence of the effects of ganoderic acid in hematological malignancies, whose mechanisms involve the stimulation of immune response, the macrophage-like differentiation, the activation of MAP-K pathway, an IL3-dependent cytotoxic action, the induction of cytoprotective autophagy, and the induction of apoptosis. In fact, this compound has been tested in twenty-six different human cancer cell types and has shown an anti-proliferative activity, especially in leukemia, lymphoma, and myeloma lines. Moreover, research clarified the capability of molecules from Ganoderma lucidum to induce mitochondrial damage in acute promyelocytic leukemia cells, without cytotoxic effects in normal mononuclear cells. Active lipids extracted from the spores of this fungus have also been shown to induce apoptosis mediated by downregulation of P-Akt and upregulation of caspases-3, -8, and -9. Among in vivo studies, a study in BALB/c mice injected with WEHI-3 leukemic cells suggested that treatment with Ganoderma lucidum promotes differentiation of T- and B-cell precursors, phagocytosis by PBMCs, and NK cell activity. Our review presents data revealing the possibility of employing Ganoderma lucidum in hematological malignancies and incorporating it into clinical practice.
Exploring the Therapeutic Potential of Ganoderma lucidum in Cancer
Gangemi S.;Pioggia G.Co-ultimo
;
2024
Abstract
Triterpenoids, such as ganoderic acid, and polysaccharides, including β-D-glucans, α-D-glucans, and α-D-mannans, are the main secondary metabolites of the medicinal fungus Ganoderma lucidum. There is evidence of the effects of ganoderic acid in hematological malignancies, whose mechanisms involve the stimulation of immune response, the macrophage-like differentiation, the activation of MAP-K pathway, an IL3-dependent cytotoxic action, the induction of cytoprotective autophagy, and the induction of apoptosis. In fact, this compound has been tested in twenty-six different human cancer cell types and has shown an anti-proliferative activity, especially in leukemia, lymphoma, and myeloma lines. Moreover, research clarified the capability of molecules from Ganoderma lucidum to induce mitochondrial damage in acute promyelocytic leukemia cells, without cytotoxic effects in normal mononuclear cells. Active lipids extracted from the spores of this fungus have also been shown to induce apoptosis mediated by downregulation of P-Akt and upregulation of caspases-3, -8, and -9. Among in vivo studies, a study in BALB/c mice injected with WEHI-3 leukemic cells suggested that treatment with Ganoderma lucidum promotes differentiation of T- and B-cell precursors, phagocytosis by PBMCs, and NK cell activity. Our review presents data revealing the possibility of employing Ganoderma lucidum in hematological malignancies and incorporating it into clinical practice.File | Dimensione | Formato | |
---|---|---|---|
jcm-13-01153-v2.pdf
accesso aperto
Licenza:
Dominio pubblico
Dimensione
727.33 kB
Formato
Adobe PDF
|
727.33 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.