In an effort to help reduce the costs of fluorescence microscopy and expand the use of this valuable technique, we developed a low-cost platform capable of visualising and analysing the spatio-temporal dynamics of intracellular Ca2+ signalling in astrocytes. The created platform, consisting of a specially adapted fluorescence microscope and a data analysis procedure performed with Imagej Fiji software and custom scripts, allowed us to detect relative changes of intracellular Ca2+ ions in astrocytes. To demonstrate the usefulness of the workflow, we applied the methodology to several in vitro astrocyte preparations, specifically immortalised human astrocyte cells and wild-type mouse cells. To demonstrate the reliability of the procedure, analyses were conducted by stimulating astrocyte activity with the agonist dihydroxyphenylglycine (DHPG), alone or in the presence of the antagonist 2-methyl-6-phenylethyl-pyridine (MPEP).

Dynamics of astrocytes Ca2+ signaling: a low-cost fluorescence customized system for 2D cultures

Musotto R.
Primo
;
Spatuzza M.;Catania M. V.;Pioggia G.
Ultimo
2024

Abstract

In an effort to help reduce the costs of fluorescence microscopy and expand the use of this valuable technique, we developed a low-cost platform capable of visualising and analysing the spatio-temporal dynamics of intracellular Ca2+ signalling in astrocytes. The created platform, consisting of a specially adapted fluorescence microscope and a data analysis procedure performed with Imagej Fiji software and custom scripts, allowed us to detect relative changes of intracellular Ca2+ ions in astrocytes. To demonstrate the usefulness of the workflow, we applied the methodology to several in vitro astrocyte preparations, specifically immortalised human astrocyte cells and wild-type mouse cells. To demonstrate the reliability of the procedure, analyses were conducted by stimulating astrocyte activity with the agonist dihydroxyphenylglycine (DHPG), alone or in the presence of the antagonist 2-methyl-6-phenylethyl-pyridine (MPEP).
2024
Istituto per la Ricerca e l'Innovazione Biomedica - IRIB - Sede Secondaria Messina
analysis
astrocytes
calcium waves
customized system
fluorescence
File in questo prodotto:
File Dimensione Formato  
fcell-12-1320672.pdf

accesso aperto

Licenza: Dominio pubblico
Dimensione 3.18 MB
Formato Adobe PDF
3.18 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/485403
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact