The statistical geometry of dispersing Lagrangian clusters of four particles (tetrahedra) is studied by means of high-resolution direct numerical simulations of three-dimensional homogeneous isotropic turbulence. We give the first evidence of a self-similar regime of shape dynamics characterized by almost two-dimensional, strongly elongated geometries. The analysis of four-point velocity-difference statistics and orientation shows that inertial-range eddies typically generate a straining field with a strong extensional component aligned with the elongation direction and weak extensional/compressional components in the orthogonal plane.

Multi-particle dispersion in fully developed turbulence

Alessandra Lanotte;
2005

Abstract

The statistical geometry of dispersing Lagrangian clusters of four particles (tetrahedra) is studied by means of high-resolution direct numerical simulations of three-dimensional homogeneous isotropic turbulence. We give the first evidence of a self-similar regime of shape dynamics characterized by almost two-dimensional, strongly elongated geometries. The analysis of four-point velocity-difference statistics and orientation shows that inertial-range eddies typically generate a straining field with a strong extensional component aligned with the elongation direction and weak extensional/compressional components in the orthogonal plane.
2005
Istituto di Scienze dell'Atmosfera e del Clima - ISAC
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/48554
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact