1T-TaSe_{2} is widely believed to host a Mott metal-insulator transition in the charge density wave (CDW) phase according to the spectroscopic observation of a band gap that extends across all momentum space. Previous investigations inferred that the occurrence of the Mott phase is limited to the surface only of bulk specimens, but recent analysis on thin samples revealed that the Mott-like behavior, observed in the monolayer, is rapidly suppressed with increasing thickness. Here, we report combined time- and angle-resolved photoemission spectroscopy and theoretical investigations of the electronic structure of 1T-TaSe_{2}. Our experimental results confirm the existence of a state above E_{F}, previously ascribed to the upper Hubbard band, and an overall band gap of ∼0.7  eV at Γ[over ¯]. However, supported by density functional theory calculations, we demonstrate that the origin of this state and the gap rests on band structure modifications induced by the CDW phase alone, without the need for Mott correlation effects.

Exploring the Charge Density Wave Phase of1T−TaSe2: Mott or Charge-Transfer Gap?

Cerullo, G.
Membro del Collaboration Group
;
Carpene, E.
2023

Abstract

1T-TaSe_{2} is widely believed to host a Mott metal-insulator transition in the charge density wave (CDW) phase according to the spectroscopic observation of a band gap that extends across all momentum space. Previous investigations inferred that the occurrence of the Mott phase is limited to the surface only of bulk specimens, but recent analysis on thin samples revealed that the Mott-like behavior, observed in the monolayer, is rapidly suppressed with increasing thickness. Here, we report combined time- and angle-resolved photoemission spectroscopy and theoretical investigations of the electronic structure of 1T-TaSe_{2}. Our experimental results confirm the existence of a state above E_{F}, previously ascribed to the upper Hubbard band, and an overall band gap of ∼0.7  eV at Γ[over ¯]. However, supported by density functional theory calculations, we demonstrate that the origin of this state and the gap rests on band structure modifications induced by the CDW phase alone, without the need for Mott correlation effects.
2023
Istituto di fotonica e nanotecnologie - IFN
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/485577
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact