Two meteorological models, operating at different horizontal resolutions up to 2.2 km, are employed in order to verify quantitative precipitation forecasts during three MAP Intensive Observing Periods, characterized by relatively high amounts of precipitation in the region south of the Alps. The recent availability of the MAP reanalysis using ECMWF 4D-Var data assimilation system allows for an assessment of its impact on high resolution forecasts in comparison with the operational ECMWF analysis (as in 1999). The evaluation is made using statistical scores generally applied to precipitation fields, introducing a smoothing criterion based on model derived probability estimates. Results indicate a generally better performance of the non-hydrostatic, high resolution, convective-resolving model in comparison with the hydrostatic, moderate resolution model with parameterized convection. The impact of the MAP reanalysis is less evident, although in one case clear improvements in precipitation forecasts are noted.

The impact of resolution and of MAP reanalysis on the simulations of heavy precipitation during MAP cases

Buzzi A;S Davolio;M D'Isidoro;P Malguzzi
2004

Abstract

Two meteorological models, operating at different horizontal resolutions up to 2.2 km, are employed in order to verify quantitative precipitation forecasts during three MAP Intensive Observing Periods, characterized by relatively high amounts of precipitation in the region south of the Alps. The recent availability of the MAP reanalysis using ECMWF 4D-Var data assimilation system allows for an assessment of its impact on high resolution forecasts in comparison with the operational ECMWF analysis (as in 1999). The evaluation is made using statistical scores generally applied to precipitation fields, introducing a smoothing criterion based on model derived probability estimates. Results indicate a generally better performance of the non-hydrostatic, high resolution, convective-resolving model in comparison with the hydrostatic, moderate resolution model with parameterized convection. The impact of the MAP reanalysis is less evident, although in one case clear improvements in precipitation forecasts are noted.
2004
Istituto di Scienze dell'Atmosfera e del Clima - ISAC
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/48576
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact