The unicellular microalga Euglena gracilis has always been considered the ideal alga to investigate photoreceptive responses and systems, and it has been the subject of hundreds of articles. Moreover, because of its detectable photoreceptor, it has been given a key role in the evolution of photoreception, from single and simple cells to complex visual system of higher organisms. In this article, we report the Raman spectra recorded in vivo on photoreceptors of E. gracilis and Bos taurus retina. The almost perfect superimposability (correlation coefficient r = 0.955) of these spectra states that the Euglena possesses a photoreceptor with the same structural characteristic of a vertebrate photoreceptor, i.e. a stack of membrane layers embedding rhodopsin-like proteins. Raman spectra recorded in vivo on photoreceptors of E. gracilis after hydroxylamine treatment further confirm our findings, which should lead to a reconsideration of most of the scientific literature on algae photoreception and eye evolution.

Nomen omen: Euglena gracilis possesses a rhodopsin‐based photoreceptor

Lorenzetti, Giulia;Barsanti, Laura;Birindelli, Lorenzo;Gualtieri, Paolo;Legnaioli, Stefano
2024

Abstract

The unicellular microalga Euglena gracilis has always been considered the ideal alga to investigate photoreceptive responses and systems, and it has been the subject of hundreds of articles. Moreover, because of its detectable photoreceptor, it has been given a key role in the evolution of photoreception, from single and simple cells to complex visual system of higher organisms. In this article, we report the Raman spectra recorded in vivo on photoreceptors of E. gracilis and Bos taurus retina. The almost perfect superimposability (correlation coefficient r = 0.955) of these spectra states that the Euglena possesses a photoreceptor with the same structural characteristic of a vertebrate photoreceptor, i.e. a stack of membrane layers embedding rhodopsin-like proteins. Raman spectra recorded in vivo on photoreceptors of E. gracilis after hydroxylamine treatment further confirm our findings, which should lead to a reconsideration of most of the scientific literature on algae photoreception and eye evolution.
2024
Istituto di Chimica dei Composti Organo Metallici - ICCOM - Sede Secondaria Pisa
Istituto di Biofisica - IBF
Euglena gracilis; Raman spectroscopy; retina; retinal; rhodopsin; visual system
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/485906
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact