This paper presents a novel control algorithm for a three-level interleaved buck converter (TLIBC) to supply energy to a proton exchange membrane electrolyzer (PEMEL) in the presence of renewable energy sources. It leverages the main advantages of the TLIBC, i.e., a high voltage conversion ratio, low output current ripple, and the ability to operate in case of electrical circuit failures. The new control law, based on nonlinear improved sliding model-based control (SMC), offers a significant improvement of the performance for input power variation when renewable energy sources are used. The proposed controller exhibits further benefits, such as a faster dynamic response and greater robustness against parameter uncertainties when compared to traditional PI-based control. Experimental verification is carried out using a PEMEL dynamic emulator to preserve the real PEMEL performance during the tests. The obtained experimental results demonstrated that the proposed control technique overcomes current limitations in terms of performance usually characterized by PI controllers. Particularly, during operating conditions change when considering electrolyzers powered by renewable energy sources, a faster response is obtained. The rise time is imposed by the controller, and it does not depend on the operating point.

Improved Sliding Mode-Based Controller of a High Voltage Ratio DC–DC Converter for Electrolyzers Supplied by Renewable Energy

Vitale, Gianpaolo
2024

Abstract

This paper presents a novel control algorithm for a three-level interleaved buck converter (TLIBC) to supply energy to a proton exchange membrane electrolyzer (PEMEL) in the presence of renewable energy sources. It leverages the main advantages of the TLIBC, i.e., a high voltage conversion ratio, low output current ripple, and the ability to operate in case of electrical circuit failures. The new control law, based on nonlinear improved sliding model-based control (SMC), offers a significant improvement of the performance for input power variation when renewable energy sources are used. The proposed controller exhibits further benefits, such as a faster dynamic response and greater robustness against parameter uncertainties when compared to traditional PI-based control. Experimental verification is carried out using a PEMEL dynamic emulator to preserve the real PEMEL performance during the tests. The obtained experimental results demonstrated that the proposed control technique overcomes current limitations in terms of performance usually characterized by PI controllers. Particularly, during operating conditions change when considering electrolyzers powered by renewable energy sources, a faster response is obtained. The rise time is imposed by the controller, and it does not depend on the operating point.
2024
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR - Sede Secondaria Palermo
Sliding mode control, Three-level interleaved buck converter, Proton exchange membrane electrolyzer, renewable sources.
File in questo prodotto:
File Dimensione Formato  
Improved_Sliding_Mode-Based_Controller_of_a_High_Voltage_Ratio_DCDC_Converter_for_Electrolyzers_Supplied_by_Renewable_Energy.pdf

solo utenti autorizzati

Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.35 MB
Formato Adobe PDF
3.35 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/486143
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact