The capacity of b-aminobutyric acid (BABA) to induce resistance in plants against biotic and abiotic stresses has been known for more than 50 y. In the beginning reports were mainly descriptive of the phenomenon, but it became clear with the discovery of BABA insensitive mutants in Arabidopsis that there was definitely a genetic basis underlying BABA-induced resistance. The study of these mutants, along with the use of regular hormone mutants, allowed establishing the defense pathways activated upon defense induction. To date it is clear that BABA potentiates the defense pathway more appropriate to counteract the upcoming stress situation, through a phenomenon termed priming. Interestingly, plants possess a receptor for BABA, but up to recently there was a general consensus on the fact that BABA was a xenobiotic molecule. The development of an accurate non-destructive assay for measuring aminobutyric acid isomers in planta and the finding of plant-produced BABA, thus seems to represent the missing link for the discovery of a novel plant hormone. Differences and similarities with some of the classical plant hormones are presented here.

When the story proceeds backward: The discovery of endogenous beta-aminobutyric acid as the missing link for a potential new plant hormone

Ivan Baccelli
;
2017

Abstract

The capacity of b-aminobutyric acid (BABA) to induce resistance in plants against biotic and abiotic stresses has been known for more than 50 y. In the beginning reports were mainly descriptive of the phenomenon, but it became clear with the discovery of BABA insensitive mutants in Arabidopsis that there was definitely a genetic basis underlying BABA-induced resistance. The study of these mutants, along with the use of regular hormone mutants, allowed establishing the defense pathways activated upon defense induction. To date it is clear that BABA potentiates the defense pathway more appropriate to counteract the upcoming stress situation, through a phenomenon termed priming. Interestingly, plants possess a receptor for BABA, but up to recently there was a general consensus on the fact that BABA was a xenobiotic molecule. The development of an accurate non-destructive assay for measuring aminobutyric acid isomers in planta and the finding of plant-produced BABA, thus seems to represent the missing link for the discovery of a novel plant hormone. Differences and similarities with some of the classical plant hormones are presented here.
2017
Istituto per la Protezione Sostenibile delle Piante - IPSP - Sede Secondaria Sesto Fiorentino (FI)
induced resistance
non-protein amino acid
plant hormones
priming
stress
File in questo prodotto:
File Dimensione Formato  
Baccelli and Mauch-Mani 2017.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.13 MB
Formato Adobe PDF
1.13 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/486381
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact