4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-based molecules have emerged as interesting materials for optoelectronic applications due to the possibility to easily fine-tune their photophysical and optical properties, dominated by two main absorption bands in the visible range. However, no studies have been reported on the nature of these spectral features. By means of ultrafast spectroscopy, we detect intramolecular energy transfer in a spin-coated film of di-thieno-phenyl BODIPY (DTPBDP) dispersed in a polystyrene matrix after pumping the high-energy absorption band. The same effect is not present upon pumping the lowest-energy band, which instead allows the achievement of efficient amplified spontaneous emission. Density functional calculations indicate the different nature of the two main absorption bands, explaining their different photophysical behavior.
Interplay between Theory and Photophysical Characterization in Symmetric α-Substituted Thienyl BODIPY Molecule
Virgili T.
;Ganzer L.;Squeo B. M.;Calzolari A.;Pasini M.
2024
Abstract
4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-based molecules have emerged as interesting materials for optoelectronic applications due to the possibility to easily fine-tune their photophysical and optical properties, dominated by two main absorption bands in the visible range. However, no studies have been reported on the nature of these spectral features. By means of ultrafast spectroscopy, we detect intramolecular energy transfer in a spin-coated film of di-thieno-phenyl BODIPY (DTPBDP) dispersed in a polystyrene matrix after pumping the high-energy absorption band. The same effect is not present upon pumping the lowest-energy band, which instead allows the achievement of efficient amplified spontaneous emission. Density functional calculations indicate the different nature of the two main absorption bands, explaining their different photophysical behavior.| File | Dimensione | Formato | |
|---|---|---|---|
|
molecules-29-02625.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
6.7 MB
Formato
Adobe PDF
|
6.7 MB | Adobe PDF | Visualizza/Apri |
|
molecules-2985990-supplementary.pdf
accesso aperto
Descrizione: Supplementary material
Tipologia:
Altro materiale allegato
Licenza:
Altro tipo di licenza
Dimensione
502.37 kB
Formato
Adobe PDF
|
502.37 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


