4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-based molecules have emerged as interesting materials for optoelectronic applications due to the possibility to easily fine-tune their photophysical and optical properties, dominated by two main absorption bands in the visible range. However, no studies have been reported on the nature of these spectral features. By means of ultrafast spectroscopy, we detect intramolecular energy transfer in a spin-coated film of di-thieno-phenyl BODIPY (DTPBDP) dispersed in a polystyrene matrix after pumping the high-energy absorption band. The same effect is not present upon pumping the lowest-energy band, which instead allows the achievement of efficient amplified spontaneous emission. Density functional calculations indicate the different nature of the two main absorption bands, explaining their different photophysical behavior.

Interplay between Theory and Photophysical Characterization in Symmetric α-Substituted Thienyl BODIPY Molecule

Virgili T.;Ganzer L.;Squeo B. M.;Calzolari A.;Pasini M.
2024

Abstract

4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-based molecules have emerged as interesting materials for optoelectronic applications due to the possibility to easily fine-tune their photophysical and optical properties, dominated by two main absorption bands in the visible range. However, no studies have been reported on the nature of these spectral features. By means of ultrafast spectroscopy, we detect intramolecular energy transfer in a spin-coated film of di-thieno-phenyl BODIPY (DTPBDP) dispersed in a polystyrene matrix after pumping the high-energy absorption band. The same effect is not present upon pumping the lowest-energy band, which instead allows the achievement of efficient amplified spontaneous emission. Density functional calculations indicate the different nature of the two main absorption bands, explaining their different photophysical behavior.
2024
Istituto di fotonica e nanotecnologie - IFN - Sede Milano
Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" - SCITEC
Istituto Nanoscienze - NANO - Sede Secondaria Modena
Istituto Nanoscienze - NANO
amplified spontaneous emission
BODIPY
density functional calculation
ultrafast spectroscopy
File in questo prodotto:
File Dimensione Formato  
molecules-29-02625.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 6.7 MB
Formato Adobe PDF
6.7 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/486442
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact