Achieving an active manipulation of colours has huge implications in optoelectronics, as colour engineering can be exploited in a number of applications, ranging from display to lightning. In the last decade, the synergy of the highly pure colours of 1D photonic crystals, also known as Bragg stacks, with electro-tunable materials have been proposed as an interesting route to attain such a technologically relevant effect. However, recent works rely on the use of liquid electrolytes, which can pose issues in terms of chemical and environmental stability. Here, we report on the proof-of-concept of an electrolyte free and solution-processed electro-responsive Bragg stack. We integrate an electro-responsive plasmonic metal oxide, namely indium tin oxide, in a 1D photonic crystal structure made of alternating layers of ITO and TiO2 nanoparticles. In such a device, we observed a maximum of 23 nm blue-shift upon the application of an external bias (10 V). Our data suggest that electrochromism can be attained in all-solid state systems by combining a judicious selection of the constituent materials with device architecture optimisation. This journal is
Electro-responsivity in electrolyte-free and solution processed Bragg stacks
Chiasera A.;Sorrentino R.;Scotognella F.
2020
Abstract
Achieving an active manipulation of colours has huge implications in optoelectronics, as colour engineering can be exploited in a number of applications, ranging from display to lightning. In the last decade, the synergy of the highly pure colours of 1D photonic crystals, also known as Bragg stacks, with electro-tunable materials have been proposed as an interesting route to attain such a technologically relevant effect. However, recent works rely on the use of liquid electrolytes, which can pose issues in terms of chemical and environmental stability. Here, we report on the proof-of-concept of an electrolyte free and solution-processed electro-responsive Bragg stack. We integrate an electro-responsive plasmonic metal oxide, namely indium tin oxide, in a 1D photonic crystal structure made of alternating layers of ITO and TiO2 nanoparticles. In such a device, we observed a maximum of 23 nm blue-shift upon the application of an external bias (10 V). Our data suggest that electrochromism can be attained in all-solid state systems by combining a judicious selection of the constituent materials with device architecture optimisation. This journal is| File | Dimensione | Formato | |
|---|---|---|---|
|
2003.14050.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Dominio pubblico
Dimensione
961.2 kB
Formato
Adobe PDF
|
961.2 kB | Adobe PDF | Visualizza/Apri |
|
d0tc02437f.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.79 MB
Formato
Adobe PDF
|
2.79 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


