Achieving an active manipulation of colours has huge implications in optoelectronics, as colour engineering can be exploited in a number of applications, ranging from display to lightning. In the last decade, the synergy of the highly pure colours of 1D photonic crystals, also known as Bragg stacks, with electro-tunable materials have been proposed as an interesting route to attain such a technologically relevant effect. However, recent works rely on the use of liquid electrolytes, which can pose issues in terms of chemical and environmental stability. Here, we report on the proof-of-concept of an electrolyte free and solution-processed electro-responsive Bragg stack. We integrate an electro-responsive plasmonic metal oxide, namely indium tin oxide, in a 1D photonic crystal structure made of alternating layers of ITO and TiO2 nanoparticles. In such a device, we observed a maximum of 23 nm blue-shift upon the application of an external bias (10 V). Our data suggest that electrochromism can be attained in all-solid state systems by combining a judicious selection of the constituent materials with device architecture optimisation. This journal is

Electro-responsivity in electrolyte-free and solution processed Bragg stacks

Chiasera A.;Sorrentino R.;Scotognella F.
2020

Abstract

Achieving an active manipulation of colours has huge implications in optoelectronics, as colour engineering can be exploited in a number of applications, ranging from display to lightning. In the last decade, the synergy of the highly pure colours of 1D photonic crystals, also known as Bragg stacks, with electro-tunable materials have been proposed as an interesting route to attain such a technologically relevant effect. However, recent works rely on the use of liquid electrolytes, which can pose issues in terms of chemical and environmental stability. Here, we report on the proof-of-concept of an electrolyte free and solution-processed electro-responsive Bragg stack. We integrate an electro-responsive plasmonic metal oxide, namely indium tin oxide, in a 1D photonic crystal structure made of alternating layers of ITO and TiO2 nanoparticles. In such a device, we observed a maximum of 23 nm blue-shift upon the application of an external bias (10 V). Our data suggest that electrochromism can be attained in all-solid state systems by combining a judicious selection of the constituent materials with device architecture optimisation. This journal is
2020
Istituto di fotonica e nanotecnologie - IFN - Sede Secondaria Povo (Trento)
indium tin oxide, ultrafast spectroscopy, photonic crystal
File in questo prodotto:
File Dimensione Formato  
2003.14050.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Dominio pubblico
Dimensione 961.2 kB
Formato Adobe PDF
961.2 kB Adobe PDF Visualizza/Apri
d0tc02437f.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.79 MB
Formato Adobe PDF
2.79 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/486461
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact