The functioning of many micro-electromechanical devices with parts oscillating at high frequencies require isolation from external vibration. Phononic crystals, presenting band-gaps in the dispersion spectrum, i.e., interval of frequency in which propagating waves are attenuated, can provide an effective solution for vibration shielding at the microscale. In the present work, we design—through numerical simulations—a 3D phononic crystal with a micrometric unit cell able to work as vibration isolator for a micro system. We exploit the direct writing technique based on two-photon polymerization to realize three prototypes of different dimensions. Experimental measurements performed with a Michelson interferometer demonstrate the effectiveness of the proposal.

Microstructured Phononic Crystal Isolates from Ultrasonic Mechanical Vibrations

Pertoldi L.;Zandrini T.;Osellame R.;
2022

Abstract

The functioning of many micro-electromechanical devices with parts oscillating at high frequencies require isolation from external vibration. Phononic crystals, presenting band-gaps in the dispersion spectrum, i.e., interval of frequency in which propagating waves are attenuated, can provide an effective solution for vibration shielding at the microscale. In the present work, we design—through numerical simulations—a 3D phononic crystal with a micrometric unit cell able to work as vibration isolator for a micro system. We exploit the direct writing technique based on two-photon polymerization to realize three prototypes of different dimensions. Experimental measurements performed with a Michelson interferometer demonstrate the effectiveness of the proposal.
2022
Istituto di fotonica e nanotecnologie - IFN - Sede Milano
Band gaps
Metamaterial
Two-photon polymerization
File in questo prodotto:
File Dimensione Formato  
(2022) Microstructured phononic crystals - AS.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 5.15 MB
Formato Adobe PDF
5.15 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/486486
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact