A biomimetic hyaluronic acid (HA)-based polymer scaffold was analysed in vitro for its characteristics and potential to support mineralization as carrier-vehicle. Biomimetic apatite crystal nucleation on the scaffold surface was obtained by a fine control of the pH level that increased ionic solubility thus controlling apatite formation kinetic. Different concentrations of human mesenchymal stromal cells (h-MSCs) were seeded on the scaffold, osteogenesis was induced in the presence or absence of fibroblast growth factor -2 and mineralization was analysed at different time points. We found that only at the highest h-MSCs concentration tested, the cells were uniformly distributed inside and outside the scaffold and proliferation started to decrease from day 7. Electron microscopy analysis evidenced that h-MSCs produced extracellular matrix but did not establish a direct contact with the scaffold. We found mineralized calciumpositive areas mainly present along the backbone of the scaffold starting from day 21 and increasing at day 35. FGF-2 treatment did not accelerate or increase mineralization. Non-biomimetic HA-based control scaffold showed immature mineralized areas only at day 35. Our data demonstrate that the biomimetic treatment of an HA-based scaffold promotes a faster mineralization process suggesting its possible use in clinics as a support for improving bone repair.

Mineralization occurs faster on a new biomimetic hyaluronic acid-based scaffold

Guarino V;Raucci MG;Ambrosio L;
2010

Abstract

A biomimetic hyaluronic acid (HA)-based polymer scaffold was analysed in vitro for its characteristics and potential to support mineralization as carrier-vehicle. Biomimetic apatite crystal nucleation on the scaffold surface was obtained by a fine control of the pH level that increased ionic solubility thus controlling apatite formation kinetic. Different concentrations of human mesenchymal stromal cells (h-MSCs) were seeded on the scaffold, osteogenesis was induced in the presence or absence of fibroblast growth factor -2 and mineralization was analysed at different time points. We found that only at the highest h-MSCs concentration tested, the cells were uniformly distributed inside and outside the scaffold and proliferation started to decrease from day 7. Electron microscopy analysis evidenced that h-MSCs produced extracellular matrix but did not establish a direct contact with the scaffold. We found mineralized calciumpositive areas mainly present along the backbone of the scaffold starting from day 21 and increasing at day 35. FGF-2 treatment did not accelerate or increase mineralization. Non-biomimetic HA-based control scaffold showed immature mineralized areas only at day 35. Our data demonstrate that the biomimetic treatment of an HA-based scaffold promotes a faster mineralization process suggesting its possible use in clinics as a support for improving bone repair.
2010
MATERIALI COMPOSITI E BIOMEDICI
Biomimetic material
Hyaluronic acid
SBF
Osteogenesis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/48698
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 46
social impact