In this paper, we explore the impact of augmenting pre-trained Encoder-Decoder models, specifically T5, with linguistic knowledge for the prediction of a target task. In particular, we investigate whether fine-tuning a T5 model on an intermediate task that predicts structural linguistic properties of sentences modifies its performance in the target task of predicting sentence-level complexity. Our study encompasses diverse experiments conducted on Italian and English datasets, employing both monolingual and multilingual T5 models at various sizes. Results obtained for both languages and in cross-lingual configurations show that linguistically motivated intermediate fine-tuning has generally a positive impact on target task performance, especially when applied to smaller models and in scenarios with limited data availability.
Linguistic Knowledge Can Enhance Encoder-Decoder Models (If You Let It)
Alessio Miaschi;Felice Dell’Orletta;Giulia Venturi
2024
Abstract
In this paper, we explore the impact of augmenting pre-trained Encoder-Decoder models, specifically T5, with linguistic knowledge for the prediction of a target task. In particular, we investigate whether fine-tuning a T5 model on an intermediate task that predicts structural linguistic properties of sentences modifies its performance in the target task of predicting sentence-level complexity. Our study encompasses diverse experiments conducted on Italian and English datasets, employing both monolingual and multilingual T5 models at various sizes. Results obtained for both languages and in cross-lingual configurations show that linguistically motivated intermediate fine-tuning has generally a positive impact on target task performance, especially when applied to smaller models and in scenarios with limited data availability.| Campo DC | Valore | Lingua |
|---|---|---|
| dc.authority.orgunit | Istituto di linguistica computazionale "Antonio Zampolli" - ILC | en |
| dc.authority.people | Alessio Miaschi | en |
| dc.authority.people | Felice Dell’Orletta | en |
| dc.authority.people | Giulia Venturi | en |
| dc.collection.id.s | 71c7200a-7c5f-4e83-8d57-d3d2ba88f40d | * |
| dc.collection.name | 04.01 Contributo in Atti di convegno | * |
| dc.contributor.appartenenza | Istituto di linguistica computazionale "Antonio Zampolli" - ILC | * |
| dc.contributor.appartenenza.mi | 918 | * |
| dc.contributor.area | Non assegn | * |
| dc.contributor.area | Non assegn | * |
| dc.contributor.area | Non assegn | * |
| dc.date.accessioned | 2024/07/22 16:55:09 | - |
| dc.date.available | 2024/07/22 16:55:09 | - |
| dc.date.firstsubmission | 2024/07/22 16:45:03 | * |
| dc.date.issued | 2024 | - |
| dc.date.submission | 2025/03/03 15:36:15 | * |
| dc.description.abstracteng | In this paper, we explore the impact of augmenting pre-trained Encoder-Decoder models, specifically T5, with linguistic knowledge for the prediction of a target task. In particular, we investigate whether fine-tuning a T5 model on an intermediate task that predicts structural linguistic properties of sentences modifies its performance in the target task of predicting sentence-level complexity. Our study encompasses diverse experiments conducted on Italian and English datasets, employing both monolingual and multilingual T5 models at various sizes. Results obtained for both languages and in cross-lingual configurations show that linguistically motivated intermediate fine-tuning has generally a positive impact on target task performance, especially when applied to smaller models and in scenarios with limited data availability. | - |
| dc.description.allpeople | Miaschi, Alessio; Dell’Orletta, Felice; Venturi, Giulia | - |
| dc.description.allpeopleoriginal | Alessio Miaschi, Felice Dell’Orletta, Giulia Venturi | en |
| dc.description.fulltext | open | en |
| dc.description.numberofauthors | 3 | - |
| dc.identifier.isbn | 978-2-493814-10-4 | en |
| dc.identifier.scopus | 2-s2.0-85195967997 | - |
| dc.identifier.source | manual | * |
| dc.identifier.uri | https://hdl.handle.net/20.500.14243/487005 | - |
| dc.identifier.url | https://aclanthology.org/2024.lrec-main.922/ | en |
| dc.language.iso | eng | en |
| dc.publisher.name | ELRA and ICCL | en |
| dc.relation.conferencedate | 20-25 maggio 2024 | en |
| dc.relation.conferencename | Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) | en |
| dc.relation.conferenceplace | Torino | en |
| dc.relation.firstpage | 10539 | en |
| dc.relation.ispartofbook | Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) | en |
| dc.relation.lastpage | 10554 | en |
| dc.relation.medium | ELETTRONICO | en |
| dc.relation.numberofpages | 16 | en |
| dc.subject.keywordseng | encoder-decoder, intermediate fine-tuning, linguistic features, sentence complexity | - |
| dc.subject.singlekeyword | encoder-decoder | * |
| dc.subject.singlekeyword | intermediate fine-tuning | * |
| dc.subject.singlekeyword | linguistic features | * |
| dc.subject.singlekeyword | sentence complexity | * |
| dc.title | Linguistic Knowledge Can Enhance Encoder-Decoder Models (If You Let It) | en |
| dc.type.circulation | Internazionale | en |
| dc.type.driver | info:eu-repo/semantics/conferenceObject | - |
| dc.type.full | 04 Contributo in convegno::04.01 Contributo in Atti di convegno | it |
| dc.type.impactfactor | si | en |
| dc.type.miur | 273 | - |
| dc.type.referee | Esperti anonimi | en |
| iris.mediafilter.data | 2025/04/04 04:22:56 | * |
| iris.orcid.lastModifiedDate | 2025/03/04 13:09:40 | * |
| iris.orcid.lastModifiedMillisecond | 1741090180288 | * |
| iris.scopus.extIssued | 2024 | - |
| iris.scopus.extTitle | Linguistic Knowledge Can Enhance Encoder-Decoder Models (If You Let It) | - |
| iris.sitodocente.maxattempts | 1 | - |
| scopus.category | 2614 | * |
| scopus.category | 1706 | * |
| scopus.category | 1703 | * |
| scopus.contributor.affiliation | Institute for Computational Linguistics "A. Zampolli" (CNR-ILC) | - |
| scopus.contributor.affiliation | Institute for Computational Linguistics "A. Zampolli" (CNR-ILC) | - |
| scopus.contributor.affiliation | Institute for Computational Linguistics "A. Zampolli" (CNR-ILC) | - |
| scopus.contributor.afid | 60021199 | - |
| scopus.contributor.afid | 60021199 | - |
| scopus.contributor.afid | 60021199 | - |
| scopus.contributor.auid | 57211678681 | - |
| scopus.contributor.auid | 57540567000 | - |
| scopus.contributor.auid | 27568199800 | - |
| scopus.contributor.country | Italy | - |
| scopus.contributor.country | Italy | - |
| scopus.contributor.country | Italy | - |
| scopus.contributor.dptid | 121833164 | - |
| scopus.contributor.dptid | 121833164 | - |
| scopus.contributor.dptid | 121833164 | - |
| scopus.contributor.name | Alessio | - |
| scopus.contributor.name | Felice | - |
| scopus.contributor.name | Giulia | - |
| scopus.contributor.subaffiliation | ItaliaNLP Lab; | - |
| scopus.contributor.subaffiliation | ItaliaNLP Lab; | - |
| scopus.contributor.subaffiliation | ItaliaNLP Lab; | - |
| scopus.contributor.surname | Miaschi | - |
| scopus.contributor.surname | Dell'Orletta | - |
| scopus.contributor.surname | Venturi | - |
| scopus.date.issued | 2024 | * |
| scopus.description.abstracteng | In this paper, we explore the impact of augmenting pre-trained Encoder-Decoder models, specifically T5, with linguistic knowledge for the prediction of a target task. In particular, we investigate whether fine-tuning a T5 model on an intermediate task that predicts structural linguistic properties of sentences modifies its performance in the target task of predicting sentence-level complexity. Our study encompasses diverse experiments conducted on Italian and English datasets, employing both monolingual and multilingual T5 models at various sizes. Results obtained for both languages and in cross-lingual configurations show that linguistically motivated intermediate fine-tuning has generally a positive impact on target task performance, especially when applied to smaller models and in scenarios with limited data availability. | * |
| scopus.description.allpeopleoriginal | Miaschi A.; Dell'Orletta F.; Venturi G. | * |
| scopus.differences | scopus.relation.conferencename | * |
| scopus.differences | scopus.publisher.name | * |
| scopus.differences | scopus.subject.keywords | * |
| scopus.differences | scopus.relation.conferencedate | * |
| scopus.differences | scopus.identifier.isbn | * |
| scopus.differences | scopus.description.allpeopleoriginal | * |
| scopus.differences | scopus.relation.conferenceplace | * |
| scopus.document.type | cp | * |
| scopus.document.types | cp | * |
| scopus.identifier.isbn | 9782493814104 | * |
| scopus.identifier.pui | 644494320 | * |
| scopus.identifier.scopus | 2-s2.0-85195967997 | * |
| scopus.journal.sourceid | 21101227955 | * |
| scopus.language.iso | eng | * |
| scopus.publisher.name | European Language Resources Association (ELRA) | * |
| scopus.relation.conferencedate | 2024 | * |
| scopus.relation.conferencename | Joint 30th International Conference on Computational Linguistics and 14th International Conference on Language Resources and Evaluation, LREC-COLING 2024 | * |
| scopus.relation.conferenceplace | ita | * |
| scopus.relation.firstpage | 10539 | * |
| scopus.relation.lastpage | 10554 | * |
| scopus.subject.keywords | encoder-decoder; intermediate fine-tuning; linguistic features; sentence complexity; | * |
| scopus.title | Linguistic Knowledge Can Enhance Encoder-Decoder Models (If You Let It) | * |
| scopus.titleeng | Linguistic Knowledge Can Enhance Encoder-Decoder Models (If You Let It) | * |
| Appare nelle tipologie: | 04.01 Contributo in Atti di convegno | |
| File | Dimensione | Formato | |
|---|---|---|---|
|
2024.lrec-main.922.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
6.93 MB
Formato
Adobe PDF
|
6.93 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


