In this paper, we explore the impact of augmenting pre-trained Encoder-Decoder models, specifically T5, with linguistic knowledge for the prediction of a target task. In particular, we investigate whether fine-tuning a T5 model on an intermediate task that predicts structural linguistic properties of sentences modifies its performance in the target task of predicting sentence-level complexity. Our study encompasses diverse experiments conducted on Italian and English datasets, employing both monolingual and multilingual T5 models at various sizes. Results obtained for both languages and in cross-lingual configurations show that linguistically motivated intermediate fine-tuning has generally a positive impact on target task performance, especially when applied to smaller models and in scenarios with limited data availability.

Linguistic Knowledge Can Enhance Encoder-Decoder Models (If You Let It)

Alessio Miaschi;Felice Dell’Orletta;Giulia Venturi
2024

Abstract

In this paper, we explore the impact of augmenting pre-trained Encoder-Decoder models, specifically T5, with linguistic knowledge for the prediction of a target task. In particular, we investigate whether fine-tuning a T5 model on an intermediate task that predicts structural linguistic properties of sentences modifies its performance in the target task of predicting sentence-level complexity. Our study encompasses diverse experiments conducted on Italian and English datasets, employing both monolingual and multilingual T5 models at various sizes. Results obtained for both languages and in cross-lingual configurations show that linguistically motivated intermediate fine-tuning has generally a positive impact on target task performance, especially when applied to smaller models and in scenarios with limited data availability.
Campo DC Valore Lingua
dc.authority.orgunit Istituto di linguistica computazionale "Antonio Zampolli" - ILC en
dc.authority.people Alessio Miaschi en
dc.authority.people Felice Dell’Orletta en
dc.authority.people Giulia Venturi en
dc.collection.id.s 71c7200a-7c5f-4e83-8d57-d3d2ba88f40d *
dc.collection.name 04.01 Contributo in Atti di convegno *
dc.contributor.appartenenza Istituto di linguistica computazionale "Antonio Zampolli" - ILC *
dc.contributor.appartenenza.mi 918 *
dc.contributor.area Non assegn *
dc.contributor.area Non assegn *
dc.contributor.area Non assegn *
dc.date.accessioned 2024/07/22 16:55:09 -
dc.date.available 2024/07/22 16:55:09 -
dc.date.firstsubmission 2024/07/22 16:45:03 *
dc.date.issued 2024 -
dc.date.submission 2025/03/03 15:36:15 *
dc.description.abstracteng In this paper, we explore the impact of augmenting pre-trained Encoder-Decoder models, specifically T5, with linguistic knowledge for the prediction of a target task. In particular, we investigate whether fine-tuning a T5 model on an intermediate task that predicts structural linguistic properties of sentences modifies its performance in the target task of predicting sentence-level complexity. Our study encompasses diverse experiments conducted on Italian and English datasets, employing both monolingual and multilingual T5 models at various sizes. Results obtained for both languages and in cross-lingual configurations show that linguistically motivated intermediate fine-tuning has generally a positive impact on target task performance, especially when applied to smaller models and in scenarios with limited data availability. -
dc.description.allpeople Miaschi, Alessio; Dell’Orletta, Felice; Venturi, Giulia -
dc.description.allpeopleoriginal Alessio Miaschi, Felice Dell’Orletta, Giulia Venturi en
dc.description.fulltext open en
dc.description.numberofauthors 3 -
dc.identifier.isbn 978-2-493814-10-4 en
dc.identifier.scopus 2-s2.0-85195967997 -
dc.identifier.source manual *
dc.identifier.uri https://hdl.handle.net/20.500.14243/487005 -
dc.identifier.url https://aclanthology.org/2024.lrec-main.922/ en
dc.language.iso eng en
dc.publisher.name ELRA and ICCL en
dc.relation.conferencedate 20-25 maggio 2024 en
dc.relation.conferencename Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) en
dc.relation.conferenceplace Torino en
dc.relation.firstpage 10539 en
dc.relation.ispartofbook Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) en
dc.relation.lastpage 10554 en
dc.relation.medium ELETTRONICO en
dc.relation.numberofpages 16 en
dc.subject.keywordseng encoder-decoder, intermediate fine-tuning, linguistic features, sentence complexity -
dc.subject.singlekeyword encoder-decoder *
dc.subject.singlekeyword intermediate fine-tuning *
dc.subject.singlekeyword linguistic features *
dc.subject.singlekeyword sentence complexity *
dc.title Linguistic Knowledge Can Enhance Encoder-Decoder Models (If You Let It) en
dc.type.circulation Internazionale en
dc.type.driver info:eu-repo/semantics/conferenceObject -
dc.type.full 04 Contributo in convegno::04.01 Contributo in Atti di convegno it
dc.type.impactfactor si en
dc.type.miur 273 -
dc.type.referee Esperti anonimi en
iris.mediafilter.data 2025/04/04 04:22:56 *
iris.orcid.lastModifiedDate 2025/03/04 13:09:40 *
iris.orcid.lastModifiedMillisecond 1741090180288 *
iris.scopus.extIssued 2024 -
iris.scopus.extTitle Linguistic Knowledge Can Enhance Encoder-Decoder Models (If You Let It) -
iris.sitodocente.maxattempts 1 -
scopus.category 2614 *
scopus.category 1706 *
scopus.category 1703 *
scopus.contributor.affiliation Institute for Computational Linguistics "A. Zampolli" (CNR-ILC) -
scopus.contributor.affiliation Institute for Computational Linguistics "A. Zampolli" (CNR-ILC) -
scopus.contributor.affiliation Institute for Computational Linguistics "A. Zampolli" (CNR-ILC) -
scopus.contributor.afid 60021199 -
scopus.contributor.afid 60021199 -
scopus.contributor.afid 60021199 -
scopus.contributor.auid 57211678681 -
scopus.contributor.auid 57540567000 -
scopus.contributor.auid 27568199800 -
scopus.contributor.country Italy -
scopus.contributor.country Italy -
scopus.contributor.country Italy -
scopus.contributor.dptid 121833164 -
scopus.contributor.dptid 121833164 -
scopus.contributor.dptid 121833164 -
scopus.contributor.name Alessio -
scopus.contributor.name Felice -
scopus.contributor.name Giulia -
scopus.contributor.subaffiliation ItaliaNLP Lab; -
scopus.contributor.subaffiliation ItaliaNLP Lab; -
scopus.contributor.subaffiliation ItaliaNLP Lab; -
scopus.contributor.surname Miaschi -
scopus.contributor.surname Dell'Orletta -
scopus.contributor.surname Venturi -
scopus.date.issued 2024 *
scopus.description.abstracteng In this paper, we explore the impact of augmenting pre-trained Encoder-Decoder models, specifically T5, with linguistic knowledge for the prediction of a target task. In particular, we investigate whether fine-tuning a T5 model on an intermediate task that predicts structural linguistic properties of sentences modifies its performance in the target task of predicting sentence-level complexity. Our study encompasses diverse experiments conducted on Italian and English datasets, employing both monolingual and multilingual T5 models at various sizes. Results obtained for both languages and in cross-lingual configurations show that linguistically motivated intermediate fine-tuning has generally a positive impact on target task performance, especially when applied to smaller models and in scenarios with limited data availability. *
scopus.description.allpeopleoriginal Miaschi A.; Dell'Orletta F.; Venturi G. *
scopus.differences scopus.relation.conferencename *
scopus.differences scopus.publisher.name *
scopus.differences scopus.subject.keywords *
scopus.differences scopus.relation.conferencedate *
scopus.differences scopus.identifier.isbn *
scopus.differences scopus.description.allpeopleoriginal *
scopus.differences scopus.relation.conferenceplace *
scopus.document.type cp *
scopus.document.types cp *
scopus.identifier.isbn 9782493814104 *
scopus.identifier.pui 644494320 *
scopus.identifier.scopus 2-s2.0-85195967997 *
scopus.journal.sourceid 21101227955 *
scopus.language.iso eng *
scopus.publisher.name European Language Resources Association (ELRA) *
scopus.relation.conferencedate 2024 *
scopus.relation.conferencename Joint 30th International Conference on Computational Linguistics and 14th International Conference on Language Resources and Evaluation, LREC-COLING 2024 *
scopus.relation.conferenceplace ita *
scopus.relation.firstpage 10539 *
scopus.relation.lastpage 10554 *
scopus.subject.keywords encoder-decoder; intermediate fine-tuning; linguistic features; sentence complexity; *
scopus.title Linguistic Knowledge Can Enhance Encoder-Decoder Models (If You Let It) *
scopus.titleeng Linguistic Knowledge Can Enhance Encoder-Decoder Models (If You Let It) *
Appare nelle tipologie: 04.01 Contributo in Atti di convegno
File in questo prodotto:
File Dimensione Formato  
2024.lrec-main.922.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 6.93 MB
Formato Adobe PDF
6.93 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/487005
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact