Cone calorimetry has been performed to verify the flame retardancy effects induced by each filler composition. Nevertheless manufacturability issues require the evaluation of the rheological changes induced by filler on the unloaded matrix system. Rheological tests have been, therefore, performed to identify the maximum concentration of filler. Based on these results thermogravimetric tests have been performed to investigate thermal degradation kinetics of selected systems. The feasibility of Kissinger and Flynn-Wall-Ozawa method for the determination of characteristic degradation kinetics parameters has been evaluated and results were analysed. A simplified decomposition model was assumed to analyse epoxy degradation behaviour; it was found that this model gives appreciable matching with experimental TGA curve trend for neat epoxy whereas for the filled compounds additional stages were assume to occur.

Effects of zinc-based flame retardants on the degradation behaviour of an aerospace epoxy matrix

V Antonucci;M Zarrelli;M Giordano
2009

Abstract

Cone calorimetry has been performed to verify the flame retardancy effects induced by each filler composition. Nevertheless manufacturability issues require the evaluation of the rheological changes induced by filler on the unloaded matrix system. Rheological tests have been, therefore, performed to identify the maximum concentration of filler. Based on these results thermogravimetric tests have been performed to investigate thermal degradation kinetics of selected systems. The feasibility of Kissinger and Flynn-Wall-Ozawa method for the determination of characteristic degradation kinetics parameters has been evaluated and results were analysed. A simplified decomposition model was assumed to analyse epoxy degradation behaviour; it was found that this model gives appreciable matching with experimental TGA curve trend for neat epoxy whereas for the filled compounds additional stages were assume to occur.
2009
MATERIALI COMPOSITI E BIOMEDICI
Istituto per i Polimeri, Compositi e Biomateriali - IPCB
Epoxy
Thermogravimetric analysis
Flame retardants
Degradation kinetics
Cone calorimeter
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/48714
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 46
  • ???jsp.display-item.citation.isi??? ND
social impact