A fine tuning of the electrical conductivity from insulator to conductor behavior has been obtained for a multiwalled carbon nanotubes epoxy composite at a fixed substatistical percolation threshold content by varying the organization of the nanotubes network. A multiscale characterization has been carried out by transmission optical microscopy technique and small angle x-ray analysis that revealed a two level structure characterized by different topological arrangements for the micron sized clusters and nanosized isolated bundles, respectively. A picture of the multidimensional organization of the nanotubes network has been proposed to account for the observed transition modulation.

Tuning the insulator to conductor transition in a Multi Walled Carbon Nanotubes/Epoxy composite at substatistical percolation threshold

Marino Lavorgna;Vincenza Antonucci;Michele Giordano
2009

Abstract

A fine tuning of the electrical conductivity from insulator to conductor behavior has been obtained for a multiwalled carbon nanotubes epoxy composite at a fixed substatistical percolation threshold content by varying the organization of the nanotubes network. A multiscale characterization has been carried out by transmission optical microscopy technique and small angle x-ray analysis that revealed a two level structure characterized by different topological arrangements for the micron sized clusters and nanosized isolated bundles, respectively. A picture of the multidimensional organization of the nanotubes network has been proposed to account for the observed transition modulation.
2009
MATERIALI COMPOSITI E BIOMEDICI
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/48717
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 32
social impact