A multi-technique study devoted to investigate the surface features of nanosized hydroxyapatite (HA) was carried out. UHR-TEM observation provided evidence that HA nanoparticles are constituted by a crystalline core, elongated in the direction of the crystallographic c-axis, coated by an amorphous layer 1-2 nm thick. By means of IR spectroscopy and microgravimetry, the amount of water and hydroxy groups on the surface was evaluated. For the as-prepared material, it was found that the first hydration layer is mainly constituted by H2O molecules interacting through a coordinative bond with Ca2+ in a 1:1 ratio, while hydroxy groups account only for ca. 20% of surface hydration species. Outgassing at increasing temperatures up to 300 °C resulted in a complete surface dehydration, accompanied by a decrease of the capability to readsorb water. Possible changes of the local structure of surface Ca2+ ions were probed by IR spectra of adsorbed CO. The combination of these data with rehydration tests suggested that a significant part of surface Ca2+ ions, once dehydrated, can undergo a relaxation inward the surface, progressively more irreversible as the outgassing temperature increases.

Surface Structure, Hydration, and Cationic Sites of Nanohydroxyapatite: UHR-TEM, IR, and Microgravimetric Studies

ANNA TAMPIERI;ELENA LANDI;SALVATORE COLUCCIA;
2007

Abstract

A multi-technique study devoted to investigate the surface features of nanosized hydroxyapatite (HA) was carried out. UHR-TEM observation provided evidence that HA nanoparticles are constituted by a crystalline core, elongated in the direction of the crystallographic c-axis, coated by an amorphous layer 1-2 nm thick. By means of IR spectroscopy and microgravimetry, the amount of water and hydroxy groups on the surface was evaluated. For the as-prepared material, it was found that the first hydration layer is mainly constituted by H2O molecules interacting through a coordinative bond with Ca2+ in a 1:1 ratio, while hydroxy groups account only for ca. 20% of surface hydration species. Outgassing at increasing temperatures up to 300 °C resulted in a complete surface dehydration, accompanied by a decrease of the capability to readsorb water. Possible changes of the local structure of surface Ca2+ ions were probed by IR spectra of adsorbed CO. The combination of these data with rehydration tests suggested that a significant part of surface Ca2+ ions, once dehydrated, can undergo a relaxation inward the surface, progressively more irreversible as the outgassing temperature increases.
2007
Istituto di Scienza, Tecnologia e Sostenibilità per lo Sviluppo dei Materiali Ceramici - ISSMC (ex ISTEC)
Surfaces
nanosized Apatite
Spectroscopy
Microgravimetry
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/48764
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 106
social impact