The incorporation of magnesium ions (in the range 5-10 mol% in respect to Ca) into the hydroxyapatite structure, which is of great interest for the developing of artificial bone, was performed using magnesium chloride, calcium hydroxide and phosphoric acid, as reactants. Among the synthesized powders, the synthetic HA powder containing 5.7% Mg substituting for calcium was selected, due to its better chemico-physical features, and transformed into granules of 400-600 micron, for biocompatibility tests (genotoxicity, carcinogenicity, toxicity, in vitro cytotoxicity and in vivo skin irritation-sensitization tests). In vivo tests were carried out on New Zealand White rabbits using the granulate as filling for a femoral bone defect: osteoconductivity and resorption were found to be enhanced compared to commercial stoichiometric HA granulate, taken as control.

Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behaviour

Elena Landi;Anna Tampieri;Monica Sandri;Simone Sprio
2008

Abstract

The incorporation of magnesium ions (in the range 5-10 mol% in respect to Ca) into the hydroxyapatite structure, which is of great interest for the developing of artificial bone, was performed using magnesium chloride, calcium hydroxide and phosphoric acid, as reactants. Among the synthesized powders, the synthetic HA powder containing 5.7% Mg substituting for calcium was selected, due to its better chemico-physical features, and transformed into granules of 400-600 micron, for biocompatibility tests (genotoxicity, carcinogenicity, toxicity, in vitro cytotoxicity and in vivo skin irritation-sensitization tests). In vivo tests were carried out on New Zealand White rabbits using the granulate as filling for a femoral bone defect: osteoconductivity and resorption were found to be enhanced compared to commercial stoichiometric HA granulate, taken as control.
2008
Istituto di Scienza, Tecnologia e Sostenibilità per lo Sviluppo dei Materiali Ceramici - ISSMC (ex ISTEC)
magnesium substituted apatite
ceramics
synthetic powders
bone substitute
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/48785
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 398
  • ???jsp.display-item.citation.isi??? 360
social impact